8,696 research outputs found

    Lipid changes within the epidermis of living skin equivalents observed across a time-course by MALDI-MS imaging and profiling

    Get PDF
    © 2015 Mitchell et al. Abstract Background: Mass spectrometry imaging (MSI) is a powerful tool for the study of intact tissue sections. Here, its application to the study of the distribution of lipids in sections of reconstructed living skin equivalents during their development and maturation is described. Methods: Living skin equivalent (LSE) samples were obtained at 14 days development, re-suspended in maintenance medium and incubated for 24 h after delivery. The medium was then changed, the LSE re-incubated and samples taken at 4, 6 and 24 h time points. Mass spectra and mass spectral images were recorded from 12 ÎŒm sections of the LSE taken at each time point for comparison using matrix assisted laser desorption ionisation mass spectrometry. Results: A large number of lipid species were identified in the LSE via accurate mass-measurement MS and MSMS experiments carried out directly on the tissue sections. MS images acquired at a spatial resolution of 50 ÎŒm × 50 ÎŒm showed the distribution of identified lipids within the developing LSE and changes in their distribution with time. In particular development of an epidermal layer was observable as a compaction of the distribution of phosphatidylcholine species. Conclusions: MSI can be used to study changes in lipid composition in LSE. Determination of the changes in lipid distribution during the maturation of the LSE will assist in the identification of treatment responses in future investigations

    Exotic Smoothness and Physics

    Get PDF
    The essential role played by differentiable structures in physics is reviewed in light of recent mathematical discoveries that topologically trivial space-time models, especially the simplest one, R4{\bf R^4}, possess a rich multiplicity of such structures, no two of which are diffeomorphic to each other and thus to the standard one. This means that physics has available to it a new panoply of structures available for space-time models. These can be thought of as source of new global, but not properly topological, features. This paper reviews some background differential topology together with a discussion of the role which a differentiable structure necessarily plays in the statement of any physical theory, recalling that diffeomorphisms are at the heart of the principle of general relativity. Some of the history of the discovery of exotic, i.e., non-standard, differentiable structures is reviewed. Some new results suggesting the spatial localization of such exotic structures are described and speculations are made on the possible opportunities that such structures present for the further development of physical theories.Comment: 13 pages, LaTe

    The effect of prolonged simulated non- gravitational environment on mineral balance in the adult male, volume 1 Final report

    Get PDF
    Effect of prolonged bed rest with simulated weightlessness on mineral balance in male adult - Vol.

    Hamiltonian 2-forms in Kahler geometry, III Extremal metrics and stability

    Full text link
    This paper concerns the explicit construction of extremal Kaehler metrics on total spaces of projective bundles, which have been studied in many places. We present a unified approach, motivated by the theory of hamiltonian 2-forms (as introduced and studied in previous papers in the series) but this paper is largely independent of that theory. We obtain a characterization, on a large family of projective bundles, of those `admissible' Kaehler classes (i.e., the ones compatible with the bundle structure in a way we make precise) which contain an extremal Kaehler metric. In many cases, such as on geometrically ruled surfaces, every Kaehler class is admissible. In particular, our results complete the classification of extremal Kaehler metrics on geometrically ruled surfaces, answering several long-standing questions. We also find that our characterization agrees with a notion of K-stability for admissible Kaehler classes. Our examples and nonexistence results therefore provide a fertile testing ground for the rapidly developing theory of stability for projective varieties, and we discuss some of the ramifications. In particular we obtain examples of projective varieties which are destabilized by a non-algebraic degeneration.Comment: 40 pages, sequel to math.DG/0401320 and math.DG/0202280, but largely self-contained; partially replaces and extends math.DG/050151

    Einstein Manifolds As Yang-Mills Instantons

    Full text link
    It is well-known that Einstein gravity can be formulated as a gauge theory of Lorentz group where spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field strengths. One can then pose an interesting question: What is the Einstein equations from the gauge theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein manifolds? We show that the Einstein equations in four dimensions are precisely self-duality equations in Yang-Mills gauge theory and so Einstein manifolds correspond to Yang-Mills instantons in SO(4) = SU(2)_L x SU(2)_R gauge theory. Specifically, we prove that any Einstein manifold with or without a cosmological constant always arises as the sum of SU(2)_L instantons and SU(2)_R anti-instantons. This result explains why an Einstein manifold must be stable because two kinds of instantons belong to different gauge groups, instantons in SU(2)_L and anti-instantons in SU(2)_R, and so they cannot decay into a vacuum. We further illuminate the stability of Einstein manifolds by showing that they carry nontrivial topological invariants.Comment: v4; 17 pages, published version in Mod. Phys. Lett.

    Small coupling limit and multiple solutions to the Dirichlet Problem for Yang Mills connections in 4 dimensions - Part I

    Full text link
    In this paper (Part I) and its sequels (Part II and Part III), we analyze the structure of the space of solutions to the epsilon-Dirichlet problem for the Yang-Mills equations on the 4-dimensional disk, for small values of the coupling constant epsilon. These are in one-to-one correspondence with solutions to the Dirichlet problem for the Yang Mills equations, for small boundary data. We prove the existence of multiple solutions, and, in particular, non minimal ones, and establish a Morse Theory for this non-compact variational problem. In part I, we describe the problem, state the main theorems and do the first part of the proof. This consists in transforming the problem into a finite dimensional problem, by seeking solutions that are approximated by the connected sum of a minimal solution with an instanton, plus a correction term due to the boundary. An auxiliary equation is introduced that allows us to solve the problem orthogonally to the tangent space to the space of approximate solutions. In Part II, the finite dimensional problem is solved via the Ljusternik-Schirelman theory, and the existence proofs are completed. In Part III, we prove that the space of gauge equivalence classes of Sobolev connections with prescribed boundary value is a smooth manifold, as well as some technical lemmas used in Part I. The methods employed still work when the 4-dimensional disk is replaced by a more general compact manifold with boundary, and SU(2) is replaced by any compact Lie group

    N=2 Topological Yang-Mills Theory on Compact K\"{a}hler Surfaces

    Get PDF
    We study a topological Yang-Mills theory with N=2N=2 fermionic symmetry. Our formalism is a field theoretical interpretation of the Donaldson polynomial invariants on compact K\"{a}hler surfaces. We also study an analogous theory on compact oriented Riemann surfaces and briefly discuss a possible application of the Witten's non-Abelian localization formula to the problems in the case of compact K\"{a}hler surfaces.Comment: ESENAT-93-01 & YUMS-93-10, 34pages: [Final Version] to appear in Comm. Math. Phy

    S-duality and Topological Strings

    Get PDF
    In this paper we show how S-duality of type IIB superstrings leads to an S-duality relating A and B model topological strings on the same Calabi-Yau as had been conjectured recently: D-instantons of the B-model correspond to A-model perturbative amplitudes and D-instantons of the A-model capture perturbative B-model amplitudes. Moreover this confirms the existence of new branes in the two models. As an application we explain the recent results concerning A-model topological strings on Calabi-Yau and its equivalence to the statistical mechanical model of melting crystal.Comment: 13 page

    Drinfeld-Manin Instanton and Its Noncommutative Generalization

    Full text link
    The Drinfeld-Manin construction of U(N) instanton is reformulated in the ADHM formulism, which gives explicit general solutions of the ADHM constraints for U(N) (N>=2k-1) k-instantons. For the N<2k-1 case, implicit results are given systematically as further constraints, which can be used to the collective coordinate integral. We find that this formulism can be easily generalized to the noncommutative case, where the explicit solutions are as well obtained.Comment: 17 pages, LaTeX, references added, mailing address added, clarifications adde
    • 

    corecore