646 research outputs found
Qubit-oscillator system under ultrastrong coupling and extreme driving
We introduce an approach to studying a driven qubit-oscillator system in the
ultrastrong coupling regime, where the ratio between coupling
strength and oscillator frequency approaches unity or goes beyond, and
simultaneously for driving strengths much bigger than the qubit energy
splitting (extreme driving). Both qubit-oscillator coupling and external
driving lead to a dressing of the qubit tunneling matrix element of different
nature: the former can be used to suppress selectively certain oscillator modes
in the spectrum, while the latter can bring the qubit's dynamics to a
standstill at short times (coherent destruction of tunneling) even in the case
of ultrastrong coupling.Comment: 4+ pages, 5 figures (published version
Phonon-assisted tunneling in interacting suspended single wall carbon nanotubes
Transport in suspended metallic single wall carbon nanotubes in the presence
of strong electron-electron interaction is investigated. We consider a tube of
finite length and discuss the effects of the coupling of the electrons to the
deformation potential associated to the acoustic stretching and breathing
modes. Treating the interacting electrons within the framework of the Luttinger
liquid model, the low-energy spectrum of the coupled electron-phonon system is
evaluated. The discreteness of the spectrum is reflected in the differential
conductance which, as a function of the applied bias voltage, exhibits three
distinct families of peaks. The height of the phonon-assisted peaks is very
sensitive to the parameters. The phonon peaks are best observed when the system
is close to the Wentzel-Bardeen singularity.Comment: 14 pages, 3 figure
Direct observation of band-gap closure for a semiconducting carbon nanotube in a large parallel magnetic field
We have investigated the magnetoconductance of semiconducting carbon
nanotubes (CNTs) in pulsed, parallel magnetic fields up to 60 T, and report the
direct observation of the predicted band-gap closure and the reopening of the
gap under variation of the applied magnetic field. We also highlight the
important influence of mechanical strain on the magnetoconductance of the CNTs.Comment: 4 pages, 4 figure
Driven Tunneling Dynamics: Bloch-Redfield Theory versus Path Integral Approach
In the regime of weak bath coupling and low temperature we demonstrate
numerically for the spin-boson dynamics the equivalence between two widely used
but seemingly different roads of approximation, namely the path integral
approach and the Bloch-Redfield theory. The excellent agreement between these
two methods is corroborated by a novel efficient analytical high-frequency
approach: it well approximates the decay of quantum coherence via a series of
damped coherent oscillations. Moreover, a suitably tuned control field can
selectively enhance or suppress quantum coherence.Comment: 4 pages including 3 figures, submitted for publicatio
Sub-gap spectroscopy of thermally excited quasiparticles in a Nb contacted carbon nanotube quantum dot
We present electronic transport measurements of a single wall carbon nanotube
quantum dot coupled to Nb superconducting contacts. For temperatures comparable
to the superconducting gap peculiar transport features are observed inside the
Coulomb blockade and superconducting energy gap regions. The observed
temperature dependence can be explained in terms of sequential tunneling
processes involving thermally excited quasiparticles. In particular, these new
channels give rise to two unusual conductance peaks at zero bias in the
vicinity of the charge degeneracy point and allow to determine the degeneracy
of the ground states involved in transport. The measurements are in good
agreement with model calculations.Comment: 5 pages, 4 figure
Driving-Induced Symmetry Breaking in the Spin-Boson System
A symmetric dissipative two-state system is asymptotically completely
delocalized independent of the initial state. We show that driving-induced
localization at long times can take place when both the bias and tunneling
coupling energy are harmonically modulated. Dynamical symmetry breaking on
average occurs when the driving frequencies are odd multiples of some reference
frequency. This effect is universal, as it is independent of the dissipative
mechanism. Possible candidates for an experimental observation are flux
tunneling in the variable barrier rf SQUID and magnetization tunneling in
magnetic molecular clusters.Comment: 4 pages, 4 figures, to be published in PR
Spectrum and Franck-Condon factors of interacting suspended single-wall carbon nanotubes
A low energy theory of suspended carbon nanotube quantum dots in weak
tunnelling coupling with metallic leads is presented. The focus is put on the
dependence of the spectrum and the Franck-Condon factors on the geometry of the
junction including several vibronic modes. The relative size and the relative
position of the dot and its associated vibrons strongly influence the
electromechanical properties of the system. A detailed analysis of the complete
parameters space reveals different regimes: in the short vibron regime the
tunnelling of an electron into the nanotube generates a plasmon-vibron
excitation while in the long vibron regime polaron excitations dominate the
scenario. The small, position dependent Franck-Condon couplings of the small
vibron regime convert into uniform, large couplings in the long vibron regime.
Selection rules for the excitations of the different plasmon-vibron modes via
electronic tunnelling events are also derived.Comment: 23 pages, 8 figures, new version according to the published on
Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube
We report on nonlinear cotunneling spectroscopy of a carbon nanotube quantum
dot coupled to Nb superconducting contacts. Our measurements show rich subgap
features in the stability diagram which become more pronounced as the
temperature is increased. Applying a transport theory based on the
Liouville-von Neumann equation for the density matrix, we show that the
transport properties can be attributed to processes involving sequential as
well as elastic and inelastic cotunneling of quasiparticles thermally excited
across the gap. In particular, we predict thermal replicas of the elastic and
inelastic cotunneling peaks, in agreement with our experimental results.Comment: 21 pages, 9 figures, submitted to New Journal of Physic
Phase diffusion as a model for coherent suppression of tunneling in the presence of noise
We study the stabilization of coherent suppression of tunneling in a driven
double-well system subject to random periodic function ``kicks''. We
model dissipation due to this stochastic process as a phase diffusion process
for an effective two-level system and derive a corresponding set of Bloch
equations with phase damping terms that agree with the periodically kicked
system at discrete times. We demonstrate that the ability of noise to localize
the system on either side of the double-well potenital arises from overdamping
of the phase of oscillation and not from any cooperative effect between the
noise and the driving field. The model is investigated with a square wave
drive, which has qualitatively similar features to the widely studied
cosinusoidal drive, but has the additional advantage of allowing one to derive
exact analytic expressions.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
Blocking transport resonances via Kondo entanglement in quantum dots
Many-body entanglement is at the heart of the Kondo effect, which has its
hallmark in quantum dots as a zero-bias conductance peak at low temperatures.
It signals the emergence of a conducting singlet state formed by a localized
dot degree of freedom and conduction electrons. Carbon nanotubes offer the
possibility to study the emergence of the Kondo entanglement by tuning
many-body correlations with a gate voltage. Here we quantitatively show an
undiscovered side of
Kondo correlations, which counterintuitively tend to block conduction
channels: inelastic cotunneling lines in the magnetospectrum of a carbon
nanotube strikingly disappear when tuning the gate voltage. Considering the
global \SUT\ \SUT\ symmetry of a carbon nanotube coupled to leads,
we find that only resonances involving flips of the Kramers pseudospins,
associated to this symmetry, are observed at temperatures and voltages below
the corresponding Kondo scale. Our results demonstrate the robust formation of
entangled many-body states with no net pseudospin.Comment: 9 pages, 4 figure
- …