56 research outputs found

    Methodology of a novel risk stratification algorithm for patients with multiple myeloma in the relapsed setting

    Get PDF
    Introduction Risk stratification tools provide valuable information to inform treatment decisions. Existing algorithms for patients with multiple myeloma (MM) were based on patients with newly diagnosed disease, and these have not been validated in the relapsed setting or in routine clinical practice. We developed a risk stratification algorithm (RSA) for patients with MM at initiation of second-line (2L) treatment, based on data from the Czech Registry of Monoclonal Gammopathies. Methods Predictors of overall survival (OS) at 2L treatment were identified using Cox proportional hazards models and backward selection. Risk scores were obtained by multiplying the hazard ratios for each predictor. The K-adaptive partitioning for survival (KAPS) algorithm defined four groups of stratification based on individual risk scores. Results Performance of the RSA was assessed using Nagelkerke’s R2 test and Harrell’s concordance index through Kaplan–Meier analysis of OS data. Prognostic groups were successfully defined based on real-world data. Use of a multiplicative score based on Cox modeling and KAPS to define cut-off values was effective. Conclusion Through innovative methods of risk assessment and collaboration between physicians and statisticians, the RSA was capable of stratifying patients at 2L treatment by survival expectations. This approach can be used to develop clinical decision-making tools in other disease areas to improve patient management

    Novel risk stratification algorithm for estimating the risk of death in patients with relapsed multiple myeloma: external validation in a retrospective chart review.

    Get PDF
    OBJECTIVES AND DESIGN: A novel risk stratification algorithm estimating risk of death in patients with relapsed multiple myeloma starting second-line treatment was recently developed using multivariable Cox regression of data from a Czech registry. It uses 16 parameters routinely collected in medical practice to stratify patients into four distinct risk groups in terms of survival expectation. To provide insight into generalisability of the risk stratification algorithm, the study aimed to validate the risk stratification algorithm using real-world data from specifically designed retrospective chart audits from three European countries. PARTICIPANTS AND SETTING: Physicians collected data from 998 patients (France, 386; Germany, 344; UK, 268) and applied the risk stratification algorithm. METHODS: The performance of the Cox regression model for predicting risk of death was assessed by Nagelkerke's R2, goodness of fit and the C-index. The risk stratification algorithm's ability to discriminate overall survival across four risk groups was evaluated using Kaplan-Meier curves and HRs. RESULTS: Consistent with the Czech registry, the stratification performance of the risk stratification algorithm demonstrated clear differentiation in risk of death between the four groups. As risk groups increased, risk of death doubled. The C-index was 0.715 (95% CI 0.690 to 0.734). CONCLUSIONS: Validation of the novel risk stratification algorithm in an independent 'real-world' dataset demonstrated that it stratifies patients in four subgroups according to survival expectation

    Long-term Outcomes in Patients With Multiple Myeloma

    Get PDF
    Registry data are important for monitoring the impact of new therapies on treatment algorithms and outcomes, and for guiding clinical decision making in multiple myeloma (MM). This observational study analyzed real-world data from patients in the Population-based HAematological Registry for Observational Studies who were treated for symptomatic MM from 2008 to 2013 in the Netherlands. The primary endpoint was overall survival (OS) from initiation of first-line treatment. Secondary endpoints included OS and progression-free survival per treatment line, treatment patterns, and treatment response. Between 2008 and 2013, 917, 583, 283, and 139 patients had initiated first, second, third, and fourth treatment lines, respectively. Thalidomide-based regimens were the most frequently used first-line treatment (66%); bortezomib- and lenalidomide-based regimens were most often used in the second line (41% and 27%, respectively). The median OS (95% confidence interval) ranged from 37.5 months (34.8–41.8 months) in the first line to 9.2 months (6.2–12.3 months) in the fourth line. Univariate analyses showed that survival benefits were most apparent in younger patients (65 vs >65 years). These analyses provide important real-world information on treatment patterns and outcomes in patients with MM

    Development of the Galaxy Chronic Obstructive Pulmonary Disease (COPD) Model Using Data from ECLIPSE: Internal Validation of a Linked-Equations Cohort Model

    Get PDF
    BACKGROUND: The recent joint International Society for Pharmacoeconomics and Outcomes Research / Society for Medical Decision Making Modeling Good Research Practices Task Force emphasized the importance of conceptualizing and validating models. We report a new model of chronic obstructive pulmonary disease (COPD) (part of the Galaxy project) founded on a conceptual model, implemented using a novel linked-equation approach, and internally validated. METHODS: An expert panel developed a conceptual model including causal relationships between disease attributes, progression, and final outcomes. Risk equations describing these relationships were estimated using data from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study, with costs estimated from the TOwards a Revolution in COPD Health (TORCH) study. Implementation as a linked-equation model enabled direct estimation of health service costs and quality-adjusted life years (QALYs) for COPD patients over their lifetimes. Internal validation compared 3 years of predicted cohort experience with ECLIPSE results. RESULTS: At 3 years, the Galaxy COPD model predictions of annual exacerbation rate and annual decline in forced expiratory volume in 1 second fell within the ECLIPSE data confidence limits, although 3-year overall survival was outside the observed confidence limits. Projections of the risk equations over time permitted extrapolation to patient lifetimes. Averaging the predicted cost/QALY outcomes for the different patients within the ECLIPSE cohort gives an estimated lifetime cost of £25,214 (undiscounted)/£20,318 (discounted) and lifetime QALYs of 6.45 (undiscounted/5.24 [discounted]) per ECLIPSE patient. CONCLUSIONS: A new form of model for COPD was conceptualized, implemented, and internally validated, based on a series of linked equations using epidemiological data (ECLIPSE) and cost data (TORCH). This Galaxy model predicts COPD outcomes from treatment effects on disease attributes such as lung function, exacerbations, symptoms, or exercise capacity; further external validation is required

    Sustainability of biosimilars in europe: A delphi panel consensus with systematic literature review

    Get PDF
    Introduction: Biosimilars have the potential to enhance the sustainability of evolving health care systems. A sustainable biosimilars market requires all stakeholders to balance competition and supply chain security. However, there is significant variation in the policies for pricing, procurement, and use of biosimilars in the European Union. A modified Delphi process was conducted to achieve expert consensus on biosimilar market sustainability in Europe. Methods: The priorities of 11 stakeholders were explored in three stages: a brainstorming stage supported by a systematic literature review (SLR) and key materials identified by the participants; development and review of statements derived during brainstorming; and a facilitated roundtable discussion. Results: Participants argued that a sustainable biosimilar market must deliver tangible and transparent benefits to the health care system, while meeting the needs of all stakeholders. Key drivers of biosimilar market sustainability included: (i) competition is more effective than regulation; (ii) there should be incentives to ensure industry investment in biosimilar development and innovation; (iii) procurement processes must avoid monopolies and minimize market disruption; and (iv) principles for procurement should be defined by all stakeholders. However, findings from the SLR were limited, with significant gaps on the impact of different tender models on supply risks, savings, and sustainability. Conclusions: A sustainable biosimilar market means that all stakeholders benefit from appropriate and reliable access to biological therapies. Failure to care for biosimilar market sustainability may impoverish biosimilar development and offerings, eventually leading to increased cost for health care systems and patients, with fewer resources for innovation
    corecore