1,076 research outputs found
Rheology of Granular Materials: Dynamics in a Stress Landscape
We present a framework for analyzing the rheology of dense driven granular
materials, based on a recent proposal of a stress-based ensemble. In this
ensemble fluctuations in a granular system near jamming are controlled by a
temperature-like parameter, the angoricity, which is conjugate to the stress of
the system. In this paper, we develop a model for slowly driven granular
materials based on the stress ensemble and the idea of a landscape in stress
space. The idea of an activated process driven by the angoricity has been shown
by Behringer et al (2008) to describe the logarithmic strengthening of granular
materials. Just as in the Soft Glassy Rheology (SGR) picture, our model
represents the evolution of a small patch of granular material (a mesoscopic
region) in a stress-based trap landscape. The angoricity plays the role of the
fluctuation temperature in SGR. We determine (a) the constitutive equation, (b)
the yield stress, and (c) the distribution of stress dissipated during granular
shearing experiments, and compare these predictions to experiments of Hartley &
Behringer (2003).Comment: 17 pages, 4 figure
Pinpointing dynamic coupling in enzymes for efficient drug design
Enzymes are proteins that catalyze almost every chemical reaction in living systems, achieving rate enhancements of up to 21 orders of magnitude relative to the uncatalyzed reactions. However, despite a century of intense investigation, the biophysical basis of the enormous catalytic power of enzymes is not completely understood. Enzymes are not only central to living systems, but also to many industrial processes such as the production of food, textiles, detergents, pharmaceuticals and other chemicals where environmentally friendly, green methods are of ever increasing importance. Because of their central role for life, enzymes are key drug targets and enzyme inhibition is a central strategy in the design of new drugs. Acetylsalicylic acid, azidothymidine, acyclovir, allopurinol, chloramphenicol, exemestane, fosfomycin, isoniazid, methotrexate, profens, proguanil, statins, thiouracil and warfarin are but a small subset of approved drug substances that are used in the clinic to treat, among others, pain, fever, inflammation, malaria, cancer, HIV, bacterial and viral infections, rheumatoid arthritis, osteoarthritis and heart disease, through the inhibition of key enzymes
Self-learning Kinetic Monte-Carlo method: application to Cu(111)
We present a novel way of performing kinetic Monte Carlo simulations which
does not require an {\it a priori} list of diffusion processes and their
associated energetics and reaction rates.
Rather, at any time during the simulation, energetics for all possible
(single or multi-atom) processes, within a specific interaction range, are
either computed accurately using a saddle point search procedure, or retrieved
from a database in which previously encountered processes are stored. This
self-learning procedure enhances the speed of the simulations along with a
substantial gain in reliability because of the inclusion of many-particle
processes.
Accompanying results from the application of the method to the case of
two-dimensional Cu adatom-cluster diffusion and coalescence on Cu(111) with
detailed statistics of involved atomistic processes and contributing diffusion
coefficients attest to the suitability of the method for the purpose.Comment: 18 pages, 9 figure
Improved modelling of liquid GeSe: the impact of the exchange-correlation functional
The structural properties of liquid GeSe are studied by using
first-principles molecular dynamics in conjuncton with the Becke, Lee, Yang and
Parr (BLYP) generalized gradient approximation for the exchange and correlation
energy. The results on partial pair correlation functions, coordination
numbers, bond angle distributions and partial structure factors are compared
with available experimental data and with previous first-principle molecular
dynamics results obtained within the Perdew and Wang (PW) generalized gradient
approximation for the exchange and correlation energy. We found that the BLYP
approach substantially improves upon the PW one in the case of the short-range
properties. In particular, the GeGe pair correlation function takes a more
structured profile that includes a marked first peak due to homopolar bonds, a
first maximum exhibiting a clear shoulder and a deep minimum, all these
features being absent in the previous PW results. Overall, the amount of
tetrahedral order is significantly increased, in spite of a larger number of
GeGe homopolar connections. Due to the smaller number of miscoordinations,
diffusion coefficients obtained by the present BLYP calculation are smaller by
at least one order of magnitude than in the PW case.Comment: 6 figure
Transition from a simple yield stress fluid to a thixotropic material
From MRI rheometry we show that a pure emulsion can be turned from a simple
yield stress fluid to a thixotropic material by adding a small fraction of
colloidal particles. The two fluids have the same behavior in the liquid regime
but the loaded emulsion exhibits a critical shear rate below which no steady
flows can be observed. For a stress below the yield stress, the pure emulsion
abruptly stops flowing, whereas the viscosity of the loaded emulsion
continuously increases in time, which leads to an apparent flow stoppage. This
phenomenon can be very well represented by a model assuming a progressive
increase of the number of droplet links via colloidal particles.Comment: Published in Physical Review E.
http://pre.aps.org/abstract/PRE/v76/i5/e05140
Thermonuclear burn-up in deuterated methane
The thermonuclear burn-up of highly compressed deuterated methane CD is
considered in the spherical geometry. The minimal required values of the
burn-up parameter are determined for various
temperatures and densities . It is shown that thermonuclear burn-up
in becomes possible in practice if its initial density exceeds
. Burn-up in CDT methane
requires significantly ( 100 times) lower compressions. The developed
approach can be used in order to compute the critical burn-up parameters in an
arbitrary deuterium containing fuel
Bottlenecks to vibrational energy flow in OCS: Structures and mechanisms
Finding the causes for the nonstatistical vibrational energy relaxation in
the planar carbonyl sulfide (OCS) molecule is a longstanding problem in
chemical physics: Not only is the relaxation incomplete long past the predicted
statistical relaxation time, but it also consists of a sequence of abrupt
transitions between long-lived regions of localized energy modes. We report on
the phase space bottlenecks responsible for this slow and uneven vibrational
energy flow in this Hamiltonian system with three degrees of freedom. They
belong to a particular class of two-dimensional invariant tori which are
organized around elliptic periodic orbits. We relate the trapping and
transition mechanisms with the linear stability of these structures.Comment: 13 pages, 13 figure
Driven translocation of a polynucleotide chain through a nanopore--A continuous time Monte-Carlo study
Using continuous time Monte-Carlo method we simulated the translocation of a
polynucleotide chain driven through a nanopore by an electric field. We have
used two models of driven diffusion due to the electric field. The chain may
have strong interaction with the pore, and depends on which end of the chain
first enters the pore. Depending on this interaction, in both cases, the
distribution of times for the chain to pass through the pore in our model is
found to have three peaks, as observed in the experiment of Kasianowicz,
Brandin, Branton and Deamer (KBBD).Comment: 26 pages, 6 figure
Deformation and flow of a two-dimensional foam under continuous shear
We investigate the flow properties of a two-dimensional aqueous foam
submitted to a quasistatic shear in a Couette geometry. A strong localization
of the flow (shear banding) at the edge of the moving wall is evidenced,
characterized by an exponential decay of the average tangential velocity.
Moreover, the analysis of the rapid velocity fluctuations reveals self-similar
dynamical structures consisting of clusters of bubbles rolling as rigid bodies.
To relate the instantaneous (elastic) and time-averaged (plastic) components of
the strain, we develop a stochastic model where irreversible rearrangements are
activated by local stress fluctuations originating from the rubbing of the
wall. This model gives a complete description of our observations and is also
consistent with data obtained on granular shear bands by other groups.Comment: 5 pages, 2 figure
Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100)
The rate of diffusion of a Cu adatom on the Cu(100) surface is calculated
using thermodynamic integration within the transition state theory. The results
are found to be in excellent agreement with the essentially exact values from
molecular-dynamics simulations. The activation energy and related entropy are
shown to be effectively independent of temperature, thus establishing the
validity of the Arrhenius law over a wide range of temperatures. Our study
demonstrates the equivalence of diffusion rates calculated using thermodynamic
integration within the transition state theory and direct molecular-dynamics
simulations.Comment: 4 pages (revtex), two figures (postscript
- …