295 research outputs found

    HT2003-47477 AN INVESTIGATION OF COPPER DISSOLUTION AND THE FORMATION OF INTERMETALLIC COMPOUNDS IN MOLTEN TIN AND Tin-Silver SOLDERS

    Get PDF
    ABSTRACT This paper presents an experimental study of copper dissolution in molten tin and tin-silver (Sn-Ag) solders and the formation and presence of the Cu-Sn intermetallic compound at solder/copper interfaces. During the experiments, copper (99.9% pure) samples, coated with a RMA flux, were dipped vertically in a molten solder for different time periods ranging from 5 seconds to 10 minutes. The molten solder was maintained at temperatures of 232 o C, 250 o C and 300 o C for pure tin and 221 o C, 250 o C, and 300 o C for Sn-3.5%Ag respectively. The samples were then cut, cleaned and cold mounted in epoxy at ambient temperature. Mechanical grinding, finish polishing, etching, and optical metallographic procedures were utilized for examining the microstructures of the polished and etched samples. The average thickness of the intermetallic compound and the amount of copper dissolved was determined. Experimental results indicate the temperature of molten solder to control the rate of dissolution of copper and the formation and presence of intermetallic compounds at the interfaces. At a given temperature of the solder temperature, the rate of dissolution of copper in the solder revealed a rising trend with an increase in dwell time of copper in the solder. For short contact time periods, the dissolution rate is low and the thickness of the intermetallic compound is small. With an increase in dwell time, the dissolution rate of copper rapidly increases and eventually reaches a plateau. Initiation of dissolution of copper causes a layer of the Sn-Cu intermetallic compound to form around the copper substrate. This in turn prevents direct contact of the copper substrate with the molten solder. The rate of formation of the layer of intermetallic compound reveals a similar trend. Based on experimental results, the kinetic parameters involved in governing the growth of the intermetallic were determined for the two solders. The parameters can be used to estimate the kinetics of copper dissolution and intermetallic compound formation during soldering

    On the asymptotics of higher-dimensional partitions

    Full text link
    We conjecture that the asymptotic behavior of the numbers of solid (three-dimensional) partitions is identical to the asymptotics of the three-dimensional MacMahon numbers. Evidence is provided by an exact enumeration of solid partitions of all integers <=68 whose numbers are reproduced with surprising accuracy using the asymptotic formula (with one free parameter) and better accuracy on increasing the number of free parameters. We also conjecture that similar behavior holds for higher-dimensional partitions and provide some preliminary evidence for four and five-dimensional partitions.Comment: 30 pages, 8 tables, 4 figures (v2) New data (63-68) for solid partitions added; (v3) published version, new subsection providing an unbiased estimate of the leading for the leading coefficient added, some tables delete

    Outcomes after coverage of lenticulostriate vessels by flow diverters: a multicenter experience

    Get PDF
    OBJECTIVE: With the increasing use of flow diversion as treatment for intracranial aneurysms, there is a concomitant increased vigilance in monitoring complications. The low porosity of flow diverters is concerning when the origins of vessels are covered, whether large circle of Willis branches or critical perforators. In this study, the authors report their experience with flow diverter coverage of the lenticulostriate vessels and evaluate their safety and outcomes. METHODS: The authors retrospectively reviewed 5 institutional databases of all flow diversion cases from August 2012 to June 2018. Information regarding patient presentation, aneurysm location, treatment, and outcomes were recorded. Patients who were treated with flow diverters placed in the proximal middle cerebral artery (MCA), proximal anterior cerebral artery, or distal internal carotid artery leading to coverage of the medial and lateral lenticulostriate vessels were included. Clinical outcomes according to the modified Rankin Scale were reviewed. Univariate and multivariate analyses were performed to establish risk factors for lenticulostriate infarct. RESULTS: Fifty-two patients were included in the analysis. Postprocedure cross-sectional images were available in 30 patients. Two patients experienced transient occlusion of the MCA during the procedure; one was asymptomatic, and the other had a clinical and radiographic ipsilateral internal capsule stroke. Five patients had transient symptoms without radiographic infarct in the lenticulostriate territory. Two patients experienced in-stent thrombosis, leading to clinical MCA infarcts (one in the ipsilateral caudate) after discontinuing antiplatelet therapy. Discontinuation of dual antiplatelet therapy prior to 6 months was the only variable that was significantly correlated with stroke outcome (p \u3c 0.01, OR 0.3, 95% CI 0-0.43), and this significance persisted when controlled for other risk factors, including age, smoking status, and aneurysm location. CONCLUSIONS: The use and versatility of flow diversion is increasing, and safety data are continuing to accumulate. Here, the authors provide early data on the safety of covering lenticulostriate vessels with flow diverters. The authors concluded that the coverage of these perforators does not routinely lead to clinically significant ischemia when dual antiplatelet therapy is continued for 6 months. Further evaluation is needed in larger cohorts and with imaging follow-up as experience develops in using these devices in more distal circulation

    Detailed deletion mapping of chromosome band 14q32 in human neuroblastoma defines a 1.1-Mb region of common allelic loss

    Get PDF
    Neuroblastoma (NB) is a well-known malignant disease in infants, but its molecular mechanisms have not yet been fully elucidated. To investigate the genetic contribution of abnormalities on the long arm of chromosome 14 (14q) in NB, we analysed loss of heterozygosity (LOH) in 54 primary NB samples using 12 microsatellite markers on 14q32. Seventeen (31%) of 54 tumours showed LOH at one or more of the markers analysed, and the smallest common region of allelic loss was identified between D14S62 and D14S987. This region was estimated to be 1-cM long from the linkage map. Fluorescence in situ hybridization also confirmed the loss. There was no statistical correlation between LOH and any clinicopathologic features, including age, stage, amplification of MYCN and ploidy. We further constructed a contig spanning the lost region using bacterial artificial chromosome and estimated this region to be approximately 1.1-Mb by pulsed-field gel electrophoresis. Our results will contribute to cloning and characterizing the putative tumour-associated gene(s) in 14q32 in NB. © 2000 Cancer Research Campaig

    Mutation Detection with Next-Generation Resequencing through a Mediator Genome

    Get PDF
    The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WT and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes

    Fully automated high-quality NMR structure determination of small 2H-enriched proteins

    Get PDF
    Determination of high-quality small protein structures by nuclear magnetic resonance (NMR) methods generally requires acquisition and analysis of an extensive set of structural constraints. The process generally demands extensive backbone and sidechain resonance assignments, and weeks or even months of data collection and interpretation. Here we demonstrate rapid and high-quality protein NMR structure generation using CS-Rosetta with a perdeuterated protein sample made at a significantly reduced cost using new bacterial culture condensation methods. Our strategy provides the basis for a high-throughput approach for routine, rapid, high-quality structure determination of small proteins. As an example, we demonstrate the determination of a high-quality 3D structure of a small 8 kDa protein, E. coli cold shock protein A (CspA), using <4 days of data collection and fully automated data analysis methods together with CS-Rosetta. The resulting CspA structure is highly converged and in excellent agreement with the published crystal structure, with a backbone RMSD value of 0.5 Å, an all atom RMSD value of 1.2 Å to the crystal structure for well-defined regions, and RMSD value of 1.1 Å to crystal structure for core, non-solvent exposed sidechain atoms. Cross validation of the structure with 15N- and 13C-edited NOESY data obtained with a perdeuterated 15N, 13C-enriched 13CH3 methyl protonated CspA sample confirms that essentially all of these independently-interpreted NOE-based constraints are already satisfied in each of the 10 CS-Rosetta structures. By these criteria, the CS-Rosetta structure generated by fully automated analysis of data for a perdeuterated sample provides an accurate structure of CspA. This represents a general approach for rapid, automated structure determination of small proteins by NMR

    Phenotype Sequencing: Identifying the Genes That Cause a Phenotype Directly from Pooled Sequencing of Independent Mutants

    Get PDF
    Random mutagenesis and phenotype screening provide a powerful method for dissecting microbial functions, but their results can be laborious to analyze experimentally. Each mutant strain may contain 50–100 random mutations, necessitating extensive functional experiments to determine which one causes the selected phenotype. To solve this problem, we propose a “Phenotype Sequencing” approach in which genes causing the phenotype can be identified directly from sequencing of multiple independent mutants. We developed a new computational analysis method showing that 1. causal genes can be identified with high probability from even a modest number of mutant genomes; 2. costs can be cut many-fold compared with a conventional genome sequencing approach via an optimized strategy of library-pooling (multiple strains per library) and tag-pooling (multiple tagged libraries per sequencing lane). We have performed extensive validation experiments on a set of E. coli mutants with increased isobutanol biofuel tolerance. We generated a range of sequencing experiments varying from 3 to 32 mutant strains, with pooling on 1 to 3 sequencing lanes. Our statistical analysis of these data (4099 mutations from 32 mutant genomes) successfully identified 3 genes (acrB, marC, acrA) that have been independently validated as causing this experimental phenotype. It must be emphasized that our approach reduces mutant sequencing costs enormously. Whereas a conventional genome sequencing experiment would have cost 7,200inreagentsalone,ourPhenotypeSequencingdesignyieldedthesameinformationvalueforonly7,200 in reagents alone, our Phenotype Sequencing design yielded the same information value for only 1200. In fact, our smallest experiments reliably identified acrB and marC at a cost of only 110110–340

    PDBe-KB: collaboratively defining the biological context of structural data

    Get PDF
    The Protein Data Bank in Europe - Knowledge Base (PDBe-KB, https://pdbe-kb.org) is an open collaboration between world-leading specialist data resources contributing functional and biophysical annotations derived from or relevant to the Protein Data Bank (PDB). The goal of PDBe-KB is to place macromolecular structure data in their biological context by developing standardised data exchange formats and integrating functional annotations from the contributing partner resources into a knowledge graph that can provide valuable biological insights. Since we described PDBe-KB in 2019, there have been significant improvements in the variety of available annotation data sets and user functionality. Here, we provide an overview of the consortium, highlighting the addition of annotations such as predicted covalent binders, phosphorylation sites, effects of mutations on the protein structure and energetic local frustration. In addition, we describe a library of reusable web-based visualisation components and introduce new features such as a bulk download data service and a novel superposition service that generates clusters of superposed protein chains weekly for the whole PDB archive

    Efficient registration for precision inspection of free-form surfaces

    Full text link
    Precision inspection of free-form surface is difficult with current industry practices that rely on accurate fixtures. Alternatively, the measurements can be aligned to the part model using a geometry-based registration method, such as the iterative closest point (ICP) method, to achieve a fast and automatic inspection process. This paper discusses various techniques that accelerate the registration process and improve the efficiency of the ICP method. First, the data structures of approximated nearest nodes and topological neighbor facets are combined to speed up the closest point calculation. The closest point calculation is further improved with the cached facets across iteration steps. The registration efficiency can also be enhanced by incorporating signal-to-noise ratio into the transformation of correspondence sets to reduce or remove the noise of outliers. Last, an acceleration method based on linear or quadratic extrapolation is fine-tuned to provide the fast yet robust iteration process. These techniques have been implemented on a four-axis blade inspection machine where no accurate fixture is required. The tests of measurement simulations and inspection case studies indicated that the presented registration method is accurate and efficient.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45849/1/170_2005_Article_370.pd

    The Problem of Experience in the Study of Organizations

    Full text link
    This paper deals with the fact that we cannot experience large organizations directly, in the same way as we can experience individuals or small groups, and that this non-experientiability has certain implications for our scientific theories of organizations. Whereas a science is animated by a constructive interplay of theory concepts and experience concepts, the study of organizations has been confined to theory concepts alone. Implications of this analysis for developing a science of organizations are considered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68303/2/10.1177_017084069301400102.pd
    corecore