22 research outputs found

    Performance of Tomato with Organic Manures in Plastic Tunnel

    Full text link
    Tomato is one of the most demanded vegetable with increasing trend of commercial cultivation in Nepal. As it is the heavy feeder crop thus soil nutrient management has been always challenging. Since, in modern world organic production has been favored by consumers for many reasons thus we aimed to compare the efficacy of various compost, mineral fertilizers and their combinations in tomato production and soil productivity. For the purpose a field experiment in plastic tunnel was carried out in Horticulture Research Division, Khumaltar in two consecutive years (2014 and 2015). Srijana, a popular tomato hybrid among commercial producers, was purposively selected. Eight treatments (control, recommended doses of chemical fertilizers, compost 15 t ha-1 + cattle urine, compost 10 t ha-1 + cattle urine, compost 12.5 t ha-1 + cattle urine, compost 15 t ha-1 + 1/4 recommended dose of chemical fertilizers, compost 10 t ha-1 + ¾ recommended dose of chemical fertilizer and compost 12.5 t ha-1 + 1/2 recommended dose of chemical fertilizer) were laid out in randomized complete block design and replicated thrice. The result showed significant (p < 0.05) positive correlation between the plant height and yield of tomato. The treatment with compost dose of 12.5 t ha-1 with half dose of recommended dose of chemical fertilizers produced the highest incremental yield (85% increment) over other treatments followed by compost 15 t ha-1 with cattle urine. Addition of soil organic carbon, soil nitrogen, soil potassium by the increasing level of compost though not significant, but increment in carbon content, nitrogen content and potassium content of soil observed in successive years. For commercial producer at plastic tunnel, compost at the rate 12.5 t ha-1 with half dose of recommended level of chemical fertilizer (100:90:40 kg N:P:K ha-1) is recommended to apply in field, while for organic producer, application of 15 tha-1 compost with fermented cattle urine is recommended

    Exploring synergies and trade-offs among the sustainable development goals: collective action and adaptive capacity in marginal mountainous areas of India

    Get PDF
    Global environmental change (GEC) threatens to undermine the sustainable development goals (SDGs). Smallholders in marginal mountainous areas (MMA) are particularly vulnerable due to precarious livelihoods in challenging environments. Acting collectively can enable and constrain the ability of smallholders to adapt to GEC. The objectives of this paper are: (i) identify collective actions in four MMA of the central Indian Himalaya Region, each with differing institutional contexts; (ii) assess the adaptive capacity of each village by measuring livelihood capital assets, diversity, and sustainable land management practices. Engaging with adaptive capacity and collective action literatures, we identify three broad approaches to adaptive capacity relating to the SDGs: natural hazard mitigation (SDG 13), social vulnerability (SDG 1, 2 and 5), and social–ecological resilience (SDG 15). We then develop a conceptual framework to understand the institutional context and identify SDG synergies and trade-offs. Adopting a mixed method approach, we analyse the relationships between collective action and the adaptive capacity of each village, the sites where apparent trade-offs and synergies among SDGs occur. Results illustrate each village has unique socio-environmental characteristics, implying distinct development challenges, vulnerabilities and adaptive capacities exist. Subsequently, specific SDG synergies and trade-offs occur even within MMA, and it is therefore crucial that institutions facilitate locally appropriate collective actions in order to achieve the SDGs. We suggest that co-production in the identification, prioritisation and potential solutions to the distinct challenges facing MMA can increase understandings of the specific dynamics and feedbacks necessary to achieve the SDGs in the context of GEC

    Kinetics of the reaction of Mer-tris(picolinato)iron(III) with hydrogen peroxide in pyridine: Role of hydroxyl radicals in subsequent catalytic oxygenation of cyclohexane to the ketone

    No full text
    Reaction of pale-green high spin mer-tris(picolinato)iron(III) with t-butylhydroperoxide in pyridine gives rise to an EPR signal for the t-butylperoxyl radical via a short lived purple intermediate which itself decays eventually to a yellow-brown high spin iron(III) product. The kinetics of the corresponding reaction with hydrogen peroxide have been studied in regard to the dependence of the hydrogen peroxide and picolinic acid concentration on the rate of the initial stages. The results support two rate-determining initial steps (minutes) involving the formation of a short lived purple high spin hydroperoxo- or t-butylperoxoiron(III) intermediate (lambda(max) = 530 mn, epsilon similar to 1,000 dm(3) mol(-1) cm(-1) for the hydroperoxo species) via pre-equilibrium loss of one picolinic acid which then undergoes homolytic Fe-O bond cleavage to give iron(II) and hydroperoxyl (t-butylperoxyl) radical resulting in eventual formation of deep yellow-brown solution which undergoes further complex UV-visible changes over a period of several hours. During this latter timescale these solutions are able to carry out Gif-type catalytic oxygenation of cyclohexane to cyclohexanone in the presence of H2O2 (or O-2/pyH(+)/Zn powder) a process which however is completely inhibited in the presence of small amounts of dimethylsulfoxide, an efficient scavenger of the hydroxyl radical. Bis(picolinato)copper(II) was found to be a poor oxygenation catalyst, a finding consistent with its inability to generate the hydroxyl radical via Cu(I) under the same conditions. These results confirm that generation of hydroxyl radicals (via reaction of H2O2 with iron(II) or any other suitably reactive lower valent state) is central to the oxygenation chemistry carried out by these solutions.</p
    corecore