26,802 research outputs found

    A comparative study of nonparametric methods for pattern recognition

    Get PDF
    The applied research discussed in this report determines and compares the correct classification percentage of the nonparametric sign test, Wilcoxon's signed rank test, and K-class classifier with the performance of the Bayes classifier. The performance is determined for data which have Gaussian, Laplacian and Rayleigh probability density functions. The correct classification percentage is shown graphically for differences in modes and/or means of the probability density functions for four, eight and sixteen samples. The K-class classifier performed very well with respect to the other classifiers used. Since the K-class classifier is a nonparametric technique, it usually performed better than the Bayes classifier which assumes the data to be Gaussian even though it may not be. The K-class classifier has the advantage over the Bayes in that it works well with non-Gaussian data without having to determine the probability density function of the data. It should be noted that the data in this experiment was always unimodal

    Single Charged MSSM Higgs-boson production at a Linear Collider

    Full text link
    In the Minimal Supersymmetric Standard Model we present the calculation of the single charged Higgs-boson production in the gamma W- or Z W-fusion and the charged Higgs strahlung channel, e^+ e^- -> e nu H^\pm. The set of all O(alpha) corrections arising from loops of Standard Model fermions and scalar fermions are taken into account. Contrary to the case of single neutral heavy CP-even Higgs-boson production, for the charged Higgs boson we find for all the parameter space of the typical benchmark scenarios a cross section smaller than \sim 0.01 fb for sqrt(s)/2 \lessim M_H^\pm.Comment: 4 pages, 2 figure

    Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins

    Get PDF
    Four complementation groups of temperature-sensitive (ts) mutants of Sindbis virus that fail to make RNA at the nonpermissive temperature are known, and we have previously shown that group F mutants have defects in nsP4. Here we map representatives of groups A, B, and G. Restriction fragments from a full-length clone of Sindbis virus, Toto1101, were replaced with the corresponding fragments from the various mutants. These hybrid plasmids were transcribed in vitro by SP6 RNA polymerase to produce infectious RNA transcripts, and the virus recovered was tested for temperature sensitivity. After each lesion was mapped to a specific region, cDNA clones of both mutants and revertants were sequenced in order to determine the precise nucleotide change responsible for each mutation. Synthesis of viral RNA and complementation by rescued mutants were also examined in order to study the phenotype of each mutation in a uniform genetic background. The single mutant of group B, ts11, had a defect in nsP1 (Ala-348 to Thr). All of the group A and group G mutants examined had lesions in nsP2 (Ala-517 to Thr in ts17, Cys-304 to Tyr in ts21, and Gly-736 to Ser in ts24 for three group A mutants, and Phe-509 to Leu in ts18 and Asp-522 to Asn in ts7 for two group G mutants). In addition, ts7 had a change in nsP3 (Phe-312 to Ser) which also rendered the virus temperature sensitive and RNA-. Thus, changes in any of the four nonstructural proteins can lead to failure to synthesize RNA at a nonpermissive temperature, indicating that all four are involved in RNA synthesis. From the results presented here and from previous results, several of the activities of the nonstructural proteins can be deduced. It appears that nsP1 may be involved in the initiation of minus-strand RNA synthesis. nsP2 appears to be involved in the initiation of 26S RNA synthesis, and in addition it appears to be a protease that cleaves the nonstructural polyprotein precursors. It may also be involved in shutoff of minus-strand RNA synthesis. nsP4 appears to function as the viral polymerase or elongation factor. The functions of nsP3 are as yet unresolved

    Higher-Order Corrected Higgs Bosons in FeynHiggs 2.5

    Get PDF
    Large higher-order corrections enter the Higgs boson sector of the MSSM via Higgs-boson self-energies. Their effects have to be taken into account for the correct treatment of loop-corrected Higgs-boson mass eigenstates as external (on-shell) or internal particles in Feynman diagrams. We review how the loop corrections, including momentum dependence and imaginary contributions, are correctly taken into account for external (on-shell) Higgs boson and how effective couplings can be derived. The proceedures are implemented in the code FeynHiggs 2.5.Comment: 8 pages, no figures. Two talks given at the LCWS06 March 2006, Bangalore, Indi
    • …
    corecore