714 research outputs found

    Conserving approximations in direct perturbation theory: new semianalytical impurity solvers and their application to general lattice problems

    Full text link
    For the treatment of interacting electrons in crystal lattices approximations based on the picture of effective sites, coupled in a self-consistent fashion, have proven very useful. Particularly in the presence of strong local correlations, a local approach to the problem, combining a powerful method for the short ranged interactions with the lattice propagation part of the dynamics, determines the quality of results to a large extent. For a considerable time the non crossing approximation (NCA) in direct perturbation theory, an approach originally developed by Keiter for the Anderson impurity model, built a standard for the description of the local dynamics of interacting electrons. In the last couple of years exact methods like the numerical renormalization group (NRG) as pioneered by Wilson, have surpassed this approximation as regarding the description of the low energy regime. We present an improved approximation level of direct perturbation theory for finite Coulomb repulsion U, the crossing approximation one (CA1) and discuss its connections with other generalizations of NCA. CA1 incorporates all processes up to fourth order in the hybridization strength V in a self-consistent skeleton expansion, retaining the full energy dependence of the vertex functions. We reconstruct the local approach to the lattice problem from the point of view of cumulant perturbation theory in a very general way and discuss the proper use of impurity solvers for this purpose. Their reliability can be tested in applications to e.g. the Hubbard model and the Anderson-lattice model. We point out shortcomings of existing impurity solvers and improvements gained with CA1 in this context. This paper is dedicated to the memory of Hellmut Keiter.Comment: 45 pages, 22 figure

    Electrodynamics of electron doped iron-pnictide superconductors: Normal state properties

    Full text link
    The electrodynamic properties of Ba(Fe0.92_{0.92}Co0.08)2_{0.08})_2As2_{2} and Ba(Fe0.95_{0.95}Ni0.05)As_{0.05})_As_{2}singlecrystalshavebeeninvestigatedbyreflectivitymeasurementsinawidefrequencyrange.Inthemetallicstate,theopticalconductivityconsistsofabroadincoherentbackgroundandanarrowDrudelikecomponentwhichdeterminesthetransportproperties;onlythelattercontributionstronglydependsonthecompositionandtemperature.Thissubsystemrevealsa single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivity consists of a broad incoherent background and a narrow Drude-like component which determines the transport properties; only the latter contribution strongly depends on the composition and temperature. This subsystem reveals a T^2behaviorinthedcresistivityandscatteringratedisclosingahiddenFermiliquidbehaviorinthe122ironpnictidefamily.AnextendedDrudeanalysisyieldsthefrequencydependenceoftheeffectivemass(with behavior in the dc resistivity and scattering rate disclosing a hidden Fermi-liquid behavior in the 122 iron-pnictide family. An extended Drude analysis yields the frequency dependence of the effective mass (with m^*/m_b\approx 5$ in the static limit) and scattering rate that does not disclose a simple power law. The spectral weight shifts to lower energies upon cooling; a significant fraction is not recovered within the infrared range of frequencies.Comment: 13 pages, 9 figure

    Optical and transport properties of heavy fermions: theory compared to experiment

    Full text link
    Employing a local moment approach to the periodic Anderson model within the framework of dynamical mean-field theory, direct comparison is made between theory and experiment for the dc transport and optical conductivities of paramagnetic heavy fermion and intermediate valence metals. Four materials, exhibiting a diverse range of behaviour in their transport/optics, are analysed in detail: CeB6, YbAl3, CeAl3 and CeCoIn5. Good agreement between theory and experiment is in general found, even quantitatively, and a mutually consistent picture of transport and optics results.Comment: 21 pages, 10 figures; Replacement with minor style changes made to avoid postscript file error

    Effects of the Nearest-Neighbour Coulomb Interactions on the Ground State of the Periodic Anderson Model

    Get PDF
    The magnetic and non-magnetic ground states of the periodic Anderson model with Coulomb interaction between ff-electrons on the nearest-neighbour(NN) sites are investigated using a variational method, which gives exact calculation of the expectation values in the limit of infinite dimensions. It is shown that for a critical value of NN Coulomb interactions the magnetic ground state of the periodic Anderson model in the Kondo regime is unstable. Factors in terms of the physical processes responsible for instability of the magnetic ground state are also discussed. Our study indicates the importance of the NN Coulomb interactions for correlated two band models.Comment: RevTeX, 6 pages, 5 figures, to appear in Phys. Rev.

    Kinks in the electronic dispersion of the Hubbard model away from half filling

    Full text link
    We study kinks in the electronic dispersion of a generic strongly correlated system by dynamic mean-field theory (DMFT). The focus is on doped systems away from particle-hole symmetry where valence fluctuations matter potentially. Three different algorithms are compared to asses their strengths and weaknesses, as well as to clearly distinguish physical features from algorithmic artifacts. Our findings extend a view previously established for half-filled systems where kinks reflect the coupling of the fermionic quasiparticles to emergent collective modes, which are identified here as spin fluctuations. Kinks are observed when strong spin fluctuations are present and, additionally, a separation of energy scales for spin and charge excitations exists. Both criteria are met by strongly correlated systems close to a Mott-insulator transition. The energies of the kinks and their doping dependence fit well to the kinks in the cuprates, which is surprising in view of the spatial correlations neglected by DMFT.Comment: 13 pages, 15 figure

    Inelastic Neutron scattering in CeSi_{2-x}Ga_x ferromagnetic Kondo lattice compounds

    Full text link
    Inelastic neutron scattering investigation on ferromagnetic Kondo lattice compounds belonging to CeSi_{2-x}Ga_{x}, x = 0.7, 1.0 and 1.3, system is reported. The thermal evolution of the quasielastic response shows that the Kondo interactions dominate over the RKKY interactions with increase in Ga concentration from 0.7 to 1.3. This is related to the increase in k-f hybridization with increasing Ga concentration. The high energy response indicates the ground state to be split by crystal field in all three compounds. Using the experimental results we have calculated the crystal field parameters in all three compounds studied here.Comment: 12 Pages Revtex, 2 eps figures

    A New Heavy-Fermion Superconductor CeIrIn5: Relative of the Cuprates?

    Full text link
    CeIrIn5 is a member of a new family of heavy-fermion compounds and has a Sommerfeld specific heat coefficient of 720 mJ/mol-K2. It exhibits a bulk, thermodynamic transition to a superconducting state at Tc=0.40 K, below which the specific heat decreases as T2 to a small residual T-linear value. Surprisingly, the electrical resistivity drops below instrumental resolution at a much higher temperature T0=1.2 K. These behaviors are highly reproducible and field-dependent studies indicate that T0 and Tc arise from the same underlying electronic structure. The layered crystal structure of CeIrIn5 suggests a possible analogy to the cuprates in which spin/charge pair correlations develop well above Tc

    c-axis magnetotransport in CeCoIn5_{5}

    Full text link
    We present the results of out-of-plane electrical transport measurements on the heavy fermion superconductor CeCoIn5_{5} at temperatures from 40 mK to 400 K and in magnetic field up to 9 T. For T<T < 10 K transport measurements show that the zero-field resistivity ρc\rho_{c} changes linearly with temperature and extrapolates nearly to zero at 0 K, indicative of non-Fermi-liquid (nFL) behavior associated with a quantum critical point (QCP). The longitudinal magnetoresistance (LMR) of CeCoIn5_{5} for fields applied parallel to the c-axis is negative and scales as B/(T+T)B/(T+T^{*}) between 50 and 100 K, revealing the presence of a single-impurity Kondo energy scale T2T^{*} \sim 2 K. Beginning at 16 K a small positive LMR feature is evident for fields less than 3 tesla that grows in magnitude with decreasing temperature. For higher fields the LMR is negative and increases in magnitude with decreasing temperature. This sizable negative magnetoresistance scales as B2/TB{^2}/T from 2.6 K to roughly 8 K, and it arises from an extrapolated residual resistivity that becomes negative and grows quadratically with field in the nFL temperature regime. Applying a magnetic field along the c-axis with B >> Bc2_{c2} restores Fermi-liquid behavior in ρc(T)\rho_{c}(T) at TT less than 130 mK. Analysis of the T2T{^2} resistivity coefficient's field-dependence suggests that the QCP in CeCoIn5_{5} is located \emph{below} the upper critical field, inside the superconducting phase. These data indicate that while high-TT c-axis transport of CeCoIn5_{5} exhibits features typical for a heavy fermion system, low-TT transport is governed both by spin fluctuations associated with the QCP and Kondo interactions that are influenced by the underlying complex electronic structure intrinsic to the anisotropic CeCoIn5_{5} crystal structure
    corecore