22,384 research outputs found
Process improvement in BAe Systems and the wider aerospace sector
Purpose: To research the change management processes used to implement âworld classâ improvements in a major aerospace company, BAE SYSTEMS, and to propose a model for process improvement in the wider aerospace sector. Design/methodology/approach: The research was undertaken as a longitudinal study over a period of five years. A variety of research methodologies were used at various stages of the research including action research and observation. Semi-structured and unstructured interviews were used to gather qualitative data along with documentary evidence of the processes being used. Findings: There are three key findings. Firstly, an understanding of the production stages in the aerospace sector: future project; new product; sustain and return to work. Secondly details of a matrix-based approach and the issues regarding its implementation in a large organisation are discussed. Thirdly, a generic set of principles to aid process improvement in the aerospace sector is proposed. Research limitations/implications: Given that the study is based in one company, there are issues regarding the generalisation of the results. A potential further research project would entail the implementation of the proposed generic principles in another aerospace organisation. Practical implications: For BAE SYSTEMS, this research project aided their understanding of the issues involved in rolling out a process improvement program in a large organisation.Originality/value: Until recently, most of the research into process improvement had either been universalistic or aimed at another type of industry, such as the automotive industry. This research helps to address the specific needs of the aerospace industry
New broad 8Be nuclear resonances
Energies, total and partial widths, and reduced width amplitudes of 8Be
resonances up to an excitation energy of 26 MeV are extracted from a coupled
channel analysis of experimental data. The presence of an extremely broad J^pi
= 2^+ ``intruder'' resonance is confirmed, while a new 1^+ and very broad 4^+
resonance are discovered. A previously known 22 MeV 2^+ resonance is likely
resolved into two resonances. The experimental J^pi T = 3^(+)? resonance at 22
MeV is determined to be 3^-0, and the experimental 1^-? (at 19 MeV) and 4^-?
resonances to be isospin 0.Comment: 16 pages, LaTe
Laser anemometer measurements of trailing vortices in water
A series of measurements of trailing vortices behind lifting hydrofoils is described. These measurements were made in the Caltech Free-Surface Water Tunnel, using a laser-Doppler velocimeter to measure two components of velocity in the vortex wake. Two different model planforms were tested, and measurements were made at several free-stream velocities and angles of attack for each. Velocity profiles were measured at distances downstream of the model of from five to sixty chord lengths. These measurements are the first results of a continuing experimental programme.
In § 3 of this paper, the theory of trailing vortices is discussed. The effects of âvortex wanderingâ upon the measurements are computed, and the corrected results are seen to be in reasonable agreement with the theory
Resonance Contributions to Photoproduction on Protons Found Using Dispersion Relations and an Isobar Model
The contributions of the resonances , ,
, , , , ,
to are found from the data on cross
sections, beam and target asymmetries using two approaches: fixed-t dispersion
relations and an isobar model. Utilization of the two approaches and comparison
of the results obtained with different parametrizations of the resonance
contributions allowed us to make conclusions about the model-dependence of
these contributions. We conclude that the results for the contributions of the
resonances , , to corresponding
multipole amplitudes are stable. With this the results for and
, combined with their PDG photoexcitation helicity amplitudes,
allowed us to find the branching ratios , which have significantly
better accuracy than the PDG data. The total Breit-Wigner width of the
is model-dependent, we have obtained and using dispersion relations and the isobar model,
respectively. The results for the , ,
, are model dependent, only the signs and orders
of magnitude of their contributions to multipole amplitudes are determined. The
results for the are strongly model-dependent.Comment: 26 pages, 6 figure
Split-sideband spectroscopy in slowly modulated optomechanics
Optomechanical coupling between the motion of a mechanical oscillator and a
cavity represents a new arena for experimental investigation of quantum effects
on the mesoscopic and macroscopic scale.The motional sidebands of the output of
a cavity offer ultra-sensitive probes of the dynamics. We introduce a scheme
whereby these sidebands split asymmetrically and show how they may be used as
experimental diagnostics and signatures of quantum noise limited dynamics. We
show split-sidebands with controllable asymmetry occur by simultaneously
modulating the light-mechanical coupling and - slowly and out
of-phase. Such modulations are generic but already occur in optically trapped
set-ups where the equilibrium point of the oscillator is varied cyclically. We
analyse recently observed, but overlooked, experimental split-sideband
asymmetries; although not yet in the quantum regime, the data suggests that
split sideband structures are easily accessible to future experiments
Glassy dynamics in granular compaction
Two models are presented to study the influence of slow dynamics on granular
compaction. It is found in both cases that high values of packing fraction are
achieved only by the slow relaxation of cooperative structures. Ongoing work to
study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter,
proceedings of the Trieste workshop on 'Unifying concepts in glass physics
Evidence of slow-light effects from rotary drag of structured beams
Self-pumped slow light, typically observed within laser gain media, is created by an intense pump field. By observing the rotation of a structured laser beam upon transmission through a spinning ruby window, we show that the slowing effect applies equally to both the dark and bright regions of the incident beam. This result is incompatible with slow-light models based on simple pulse-reshaping arising from optical bleaching. Instead, the slow-light effect arises from the long upper-state lifetime of the ruby and a saturation of the absorption, from which the KramersâKronig relation gives a highly dispersive phase index and a correspondingly high group index
Shaking a Box of Sand
We present a simple model of a vibrated box of sand, and discuss its dynamics
in terms of two parameters reflecting static and dynamic disorder respectively.
The fluidised, intermediate and frozen (`glassy') dynamical regimes are
extensively probed by analysing the response of the packing fraction to steady,
as well as cyclic, shaking, and indicators of the onset of a `glass transition'
are analysed. In the `glassy' regime, our model is exactly solvable, and allows
for the qualitative description of ageing phenomena in terms of two
characteristic lengths; predictions are also made about the influence of grain
shape anisotropy on ageing behaviour.Comment: Revised version. To appear in Europhysics Letter
- âŠ