30 research outputs found

    Cloud droplets to drizzle: Contribution of transition drops to microphysical and optical properties of marine stratocumulus clouds

    Get PDF
    Aircraft measurements of the ubiquitous marine stratocumulus cloud type, with over 3000 km of in situ data from the Pacific during the Cloud System Evolution in the Trades experiment, show the ability of the Holographic Detector for Clouds (HOLODEC) instrument to smoothly interpolate the small and large droplet data collected with Cloud Droplet Probe and 2DC instruments. The combined, comprehensive instrument suite reveals a surprisingly large contribution in the predrizzle size range of 40–80 μm (transition droplets, or drizzlets), a range typically not measured and assumed to reside in a condensation‐to‐collision minimum between cloud droplet and drizzle modes. Besides shedding light on the onset of collision coalescence, drizzlets are essential contributors to optical and chemical properties because of a substantial contribution to the total surface area. When adjusted to match spatial resolution of spaceborne remote sensing, the missing drizzlets bring in situ measurements to closer agreement with satellite observations

    Final Report on HOLODEC 2 Technology Readiness Level

    Get PDF
    During the period of this project, the Holographic Detector for Clouds 2 (HOLODEC 2) instrument has advanced from a laboratory-proven instrument with some initial field testing to a fully flight-tested instrument capable of providing useful cloud microphysics measurements. This can be summarized as 'Technology Readiness Level 8: Technology is proven to work - Actual technology completed and qualified through test and demonstration.' As part of this project, improvements and upgrades have been made to the optical system, the instrument power control system, the data acquisition computer, the instrument control software, the data reconstruction and analysis software, and some of the basic algorithms for estimating basic microphysical variables like droplet diameter. Near the end of the project, the instrument flew on several research flights as part of the IDEAS 2011 project, and a small sample of data from the project is included as an example. There is one caveat in the technology readiness level stated above: the upgrades to the instrument power system were made after the flight testing, so they are not fully field proven. We anticipate that there will be an opportunity to fly the instrument as part of the IDEAS project in fall 2012

    Interactive flow behaviour and heat transfer enhancement in a microchannel with cross flow synthetic jet

    Get PDF
    This paper examines the effectiveness in combining a pulsating fluid jet for thermal enhancement in microchannel heat sinks. The proposed arrangement utilises an oscillating diaphragm to induce a high-frequency periodic fluid jet with zero net mass output at the jet orifice hence, termed "synthetic jet". The pulsed jet interacts with the fluid flow through microchannel passages altering their flow characteristics. The present study develops a 2-dimensional finite volume numerical simulation based on unsteady Reynolds-averaged Navier-Stokes equations for examining the microchannel-synthetic jet flow interaction. For a range of parametric conditions, the behaviour of this periodic flow with its special features is identified and the associated convective heat transfer rates are predicted. The results indicate that the pulsating jet leads to outstanding thermal performance in microchannel flow increasing its heat dissipation rate by about 4.3 times compared to a microchannel without jet interaction within the tested parametric range. The degree of thermal enhancement is seen to grow continuously to reach a steady value in the absence of fluid compressibility. The proposed strategy has an intrinsic ability for outstanding thermal characteristics without causing pressure drop increases in microchannel fluid passages, which is identified as a unique feature of the technique.The study also examines and presents the effects of fluid compressibility on the heat removal capacity of this arrangement. The technique is envisaged to have application potential in miniature electronic devices where localised cooling is desired over a base heat dissipation load

    CAGO: A Software Tool for Dynamic Visual Comparison and Correlation Measurement of Genome Organization

    Get PDF
    CAGO (Comparative Analysis of Genome Organization) is developed to address two critical shortcomings of conventional genome atlas plotters: lack of dynamic exploratory functions and absence of signal analysis for genomic properties. With dynamic exploratory functions, users can directly manipulate chromosome tracks of a genome atlas and intuitively identify distinct genomic signals by visual comparison. Signal analysis of genomic properties can further detect inconspicuous patterns from noisy genomic properties and calculate correlations between genomic properties across various genomes. To implement dynamic exploratory functions, CAGO presents each genome atlas in Scalable Vector Graphics (SVG) format and allows users to interact with it using a SVG viewer through JavaScript. Signal analysis functions are implemented using R statistical software and a discrete wavelet transformation package waveslim. CAGO is not only a plotter for generating complex genome atlases, but also a platform for exploring genome atlases with dynamic exploratory functions for visual comparison and with signal analysis for comparing genomic properties across multiple organisms. The web-based application of CAGO, its source code, user guides, video demos, and live examples are publicly available and can be accessed at http://cbs.ym.edu.tw/cago

    Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals

    No full text
    An ice cloud chamber was developed at the Johannes Gutenberg University of Mainz for generating several thousand data points for mass and sedimentation velocity measurements of ice crystals with sizes less than 150 μm. Ice nucleation was initiated from a cloud of supercooled droplets by local cooling using a liquid nitrogen cold finger. Three-dimensional tracks of ice crystals falling through the slightly supersaturated environment were obtained from the reconstruction of sequential holographic images, automated detection of the crystals in the hologram reconstructions, and particle tracking. Through collection of the crystals and investigation under a microscope before and after melting, crystal mass was determined as a function of size. The experimentally obtained mass versus diameter (m(D)) power law relationship resulted in lower masses for small ice crystals than from commonly adopted parameterizations. Thus, they did not support the currently accepted extrapolation of relationships measured for larger crystal sizes. The relationship between Best (X) and Reynolds (Re) numbers for columnar crystals was found to be X = 15.3Re1.2, which is in general agreement with literature parameterizations

    Search for Microphysical Signatures of Stochastic Condensation in Marine Boundary Layer Clouds Using Airborne Digital Holography

    No full text
    Droplet growth due to stochastic condensation has been considered as one of the mechanisms to cause broadening of cloud droplet size distributions and jump the bottleneck between droplet growth due to diffusion and collision‐coalescence. Digital in‐line holography is used to measure variations in droplet number concentration and droplet size in marine boundary layer clouds. Distributions of phase relaxation times are quite broad for some clouds. Turbulence correlation times are estimated, and the comparison of these with phase relaxation times suggests that clouds exist in both fast and slow microphysical regimes. Presumed signatures of stochastic condensation, such as increasing relative size dispersion and increasing droplet size with decreasing number density, are observed

    Big Game and Cattle Influence on Aspen Community Regeneration Following Prescribed Fire

    No full text
    Aspen (Populus tremuloides Michx.) is a major component of Intermountain forest ecology and relies on periodic disturbance, such as prescribed fire, to perpetuate. On the Manti-LaSal National Forest in central Utah, both big game and cattle depend on forage growing on forested lands, which has contributed to intense conflict. Understanding the effects of browsers on recently burned aspen stands is critical to managing the regeneration of these communities. This study measured the effects of cattle and big game foraging on regenerating aspen communities. Three study sites were selected from a 142-ha prescribed burn conducted in an aspen-conifer stand on the Ferron District of the Manti-LaSal National Forest in 1989. Each of the three study sites was subdivided into four areas and randomly assigned one of the following treatments: big game and cattle exclusion (No Use), big game exclusion (Cattle Use), cattle exclusion (Big Game Use), and open access (Dual Use). Vegetation was sampled in 1991-1994, 1999, and 2005. Density, biomass, height, nested frequency, and cover of aspen suckers were measured. Nested frequency and cover were measured for all other species encountered. Aspen cover, density, and biomass showed a significant year-by-treatment interaction (P 2 meters). © 2015 Society for Range Management. Published by Elsevier Inc. All rights reserved.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals

    No full text
    An ice cloud chamber was developed at the Johannes Gutenberg University of Mainz for generating several thousand data points for mass and sedimentation velocity measurements of ice crystals with sizes less than 150 µm. Ice nucleation was initiated from a cloud of supercooled droplets by local cooling using a liquid nitrogen cold finger. Three-dimensional tracks of ice crystals falling through the slightly supersaturated environment were obtained from the reconstruction of sequential holographic images, automated detection of the crystals in the hologram reconstructions, and particle tracking. Through collection of the crystals and investigation under a microscope before and after melting, crystal mass was determined as a function of size. The experimentally obtained mass versus diameter (m(D)) power law relationship resulted in lower masses for small ice crystals than from commonly adopted parameterizations. Thus, they did not support the currently accepted extrapolation of relationships measured for larger crystal sizes. The relationship between Best (X) and Reynolds (Re) numbers for columnar crystals was found to be X=15.3 Re1.2, which is in general agreement with literature parameterizations
    corecore