2 research outputs found

    Subwavelength resolution in a two-dimensional photonic-crystal-based superlens

    Get PDF
    The experimental and theoretical demonstration of a single-beam negative refraction and a superlensing effect in 2D photonic crystals was reported. As such, negative refraction was observed for the incidence angles of >20°. This broad angle range was used to demonstrate the superlensing effect, where the electromagnetic waves emitted from a point source were focused on the other side of the PC

    A spherical perfect lens

    Full text link
    It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it makes accessible the sub-wavelength image information contained in the evanescent modes of a source. Here we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive with ϵ(r)1/r\epsilon(r) \sim 1/r and μ(r)1/r\mu(r)\sim 1/r. We concentrate on lens-like solutions for the extreme near-field limit. Then the conditions for the TM and TE polarized modes become independent of μ\mu and ϵ\epsilon respectively.Comment: Revtex4, 9 pages, 2 figures (eps
    corecore