841 research outputs found

    Stability of Weyl points in magnetic half-metallic Heusler compounds

    Full text link
    We employ {\it ab-initio} fully-relativistic electronic structure calculations to study the stability of the Weyl points in the momentum space within the class of the half-metallic ferromagnetic full Heusler materials, by focusing on Co2_2TiAl as a well-established prototype compound. Here we show that both the number of the Weyl points together with their kk-space coordinates can be controlled by the orientation of the magnetization. This alternative degree of freedom, which is absent in other topological materials (e.g. in Weyl semimetals), introduces novel functionalities, specific for the class of half-metallic ferromagnets. Of special interest are Weyl points which are preserved irrespectively of any arbitrary rotation of the magnetization axis

    Heusler 4.0: Tunable Materials

    Full text link
    Heusler compounds are a large family of binary, ternary and quaternary compounds that exhibit a wide range of properties of both fundamental and potential technological interest. The extensive tunability of the Heusler compounds through chemical substitutions and structural motifs makes the family especially interesting. In this article we highlight recent major developments in the field of Heusler compounds and put these in the historical context. The evolution of the Heusler compounds can be described by four major periods of research. In the latest period, Heusler 4.0 has led to the observation of a variety of properties derived from topology that includes: topological metals with Weyl and Dirac points; a variety of non-collinear spin textures including the very recent observation of skyrmions at room temperature; and giant anomalous Hall effects in antiferromagnetic Heuslers with triangular magnetic structures. Here we give a comprehensive overview of these major achievements and set research into Heusler materials within the context of recent emerging trends in condensed matter physics

    Premartensite to martensite transition and its implications on the origin of modulation in Ni2MnGa ferromagnetic shape memory alloy

    Full text link
    We present here results of temperature dependent high resolution synchrotron x-ray powder diffraction study of sequence of phase transitions in Ni2MnGa. Our results show that the incommensurate martensite phase results from the incommensurate premartensite phase, and not from the austenite phase assumed in the adaptive phase model. The premartensite phase transforms to the martensite phase through a first order phase transition with coexistence of the two phases in a broad temperature interval (~40K), discontinuous change in the unit cell volume as also in the modulation wave vector across the transition temperature and considerable thermal hysteresis in the characteristic transition temperatures. The temperature variation of the modulation wave vector q shows smooth analytic behaviour with no evidence for any devilish plateau corresponding to an intermediate or ground state commensurate lock-in phases. The existence of the incommensurate 7M like modulated structure down to 5K suggests that the incommensurate 7M like modulation is the ground state of Ni2MnGa and not the Bain distorted tetragonal L10 phase or any other lock-in phase with a commensurate modulation. These findings can be explained within the framework of the soft phonon model

    Structural, magnetic, and transport properties of Co2_2FeSi Heusler films

    Full text link
    We report the deposition of thin Co2_2FeSi films by RF magnetron sputtering. Epitaxial (100)-oriented and L21_1 ordered growth is observed for films grown on MgO(100) substrates. (110)-oriented films on Al2_2O3_3(110) show several epitaxial domains in the film plane. Investigation of the magnetic properties reveals a saturation magnetization of 5.0 muB/f.u.mu_B/f.u. at low temperatures. The temperature dependence of the resistivity rhoxx(T)rho_{xx}(T) exhibits a crossover from a T^3.5 law at T<50K to a T^1.65 behaviour at elevated temperatures. rhoxx(H)rho_{xx}(H) shows a small anisotropic magnetoresistive effect. A weak dependence of the normal Hall effect on the external magnetic field indicates the compensation of electron and hole like contributions at the Fermi surface.Comment: 10 pages, 9 figures to be published in J. Phys. D: Appl. Phy

    Observation of Landau quantization and standing waves in HfSiS

    Full text link
    Recently, HfSiS was found to be a new type of Dirac semimetal with a line of Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are also pronounced in this compound. Here we report a systematic study of HfSiS by scanning tunneling microscopy/spectroscopy at low temperature and high magnetic field. The Rashba-split surface states are characterized by measuring Landau quantization and standing waves, which reveal a quasi-linear dispersive band structure. First-principles calculations based on density-functional theory are conducted and compared with the experimental results. Based on these investigations, the properties of the Rashba-split surface states and their interplay with defects and collective modes are discussed.Comment: 6 pages, 5 figure

    Electronic Structure, Localization and Spin-State Transition in Cu-substituted FeSe: Fe1−x_{1-x}Cux_xSe

    Full text link
    We report density functional studies of the Fe1−x_{1-x}Cux_xSe alloy done using supercell and coherent potential approximation methods. Magnetic behavior was investigated using the disordered local moment approach. We find that Cu occurs in a nominal d10d^{10} configuration and is highly disruptive to the electronic structure of the Fe sheets. This would be consistent with a metal insulator transition due to Anderson localization. We further find a strong cross over from a weak moment itinerant system to a local moment magnet at x≈0.12x \approx 0.12. We associate this with the experimentally observed jump near this concentration. Our results are consistent with the characterization of this concentration dependent jump as a transition to a spin-glass
    • …
    corecore