4,423 research outputs found

    Negative differential Rashba effect in two-dimensional hole systems

    Full text link
    We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.Comment: 3 pages, 3 figures. To appear in AP

    Efficient Implementation of MIMO Decoders

    Get PDF

    Noise-Induced Phase Space Transport in Two-Dimensional Hamiltonian Systems

    Get PDF
    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which ``sticky'' chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become ``unstuck'' much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a Fluctuation-Dissipation Theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests strongly that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.Comment: 15 pages, including 13 Figures and 1 Table, uses Phys. Rev. macro

    Stochastic approach to inflation II: classicality, coarse-graining and noises

    Full text link
    In this work we generalize a previously developed semiclassical approach to inflation, devoted to the analysis of the effective dynamics of coarse-grained fields, which are essential to the stochastic approach to inflation. We consider general non-trivial momentum distributions when defining these fields. The use of smooth cutoffs in momentum space avoids highly singular quantum noise correlations and allows us to consider the whole quantum noise sector when analyzing the conditions for the validity of an effective classical dynamical description of the coarse-grained field. We show that the weighting of modes has physical consequences, and thus cannot be considered as a mere mathematical artifact. In particular we discuss the exponential inflationary scenario and show that colored noises appear with cutoff dependent amplitudes.Comment: 18 pages, revtex, no figure

    Chaos and Noise in a Truncated Toda Potential

    Full text link
    Results are reported from a numerical investigation of orbits in a truncated Toda potential which is perturbed by weak friction and noise. Two significant conclusions are shown to emerge: (1) Despite other nontrivial behaviour, configuration, velocity, and energy space moments associated with these perturbations exhibit a simple scaling in the amplitude of the friction and noise. (2) Even very weak friction and noise can induce an extrinsic diffusion through cantori on a time scale much shorter than that associated with intrinsic diffusion in the unperturbed system.Comment: 10 pages uuencoded PostScript (figures included), (A trivial mathematical error leading to an erroneous conclusion is corrected

    Stochastic Inflation:The Quantum Phase Space Approach

    Get PDF
    In this paper a quantum mechanical phase space picture is constructed for coarse-grained free quantum fields in an inflationary Universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase space quantum distribution function are found for the cases of power law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field theoretic results (we do not restrict ourselves only to \VEV{\F^2}). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse-graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does {\em not} by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence.Comment: 43 page

    Chaotic mixing in noisy Hamiltonian systems

    Full text link
    This paper summarises an investigation of the effects of low amplitude noise and periodic driving on phase space transport in 3-D Hamiltonian systems, a problem directly applicable to systems like galaxies, where such perturbations reflect internal irregularities and.or a surrounding environment. A new diagnsotic tool is exploited to quantify how, over long times, different segments of the same chaotic orbit can exhibit very different amounts of chaos. First passage time experiments are used to study how small perturbations of an individual orbit can dramatically accelerate phase space transport, allowing `sticky' chaotic orbits trapped near regular islands to become unstuck on suprisingly short time scales. Small perturbations are also studied in the context of orbit ensembles with the aim of understanding how such irregularities can increase the efficacy of chaotic mixing. For both noise and periodic driving, the effect of the perturbation scales roughly in amplitude. For white noise, the details are unimportant: additive and multiplicative noise tend to have similar effects and the presence or absence of a friction related to the noise by a Fluctuation- Dissipation Theorem is largely irrelevant. Allowing for coloured noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that t here is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. This suggests strongly that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. Potential implications for galaxies are discussed.Comment: 15 pages including 18 figures, uses MNRAS LaTeX macro

    Quantum spinor field in the FRW universe with a constant electromagnetic background

    Get PDF
    The article is a natural continuation of our paper {\em Quantum scalar field in FRW Universe with constant electromagnetic background}, Int. J. Mod. Phys. {\bf A12}, 4837 (1997). We generalize the latter consideration to the case of massive spinor field, which is placed in FRW Universe of special type with a constant electromagnetic field. To this end special sets of exact solutions of Dirac equation in the background under consideration are constructed and classified. Using these solutions representations for out-in, in-in, and out-out spinor Green functions are explicitly constructed as proper-time integrals over the corresponding contours in complex proper-time plane. The vacuum-to-vacuum transition amplitude and number of created particles are found and vacuum instability is discussed. The mean values of the current and energy-momentum tensor are evaluated, and different approximations for them are presented. The back reaction related to particle creation and to the polarization of the unstable vacuum is estimated in different regimes.Comment: 36 pages, LaTex fil
    • …
    corecore