3 research outputs found

    Intra- and interindividual variation in flank gland secretions of free-ranging shrews Crocidura russula

    No full text
    Individual differences in Rank gland secretions were examined among males of the monogamous shrew Crocidura russula during the breeding and nonbreeding seasons. Gas chromatography was used to measure intra- and interindividual variation of flank gland secretions of free-ranging shrews from different populations. The number of compounds detected by gas chromatographic analyses was correlated with body mass, flank gland size, and the presence of blood parasites in individual shrews. Very few compounds were detected from the Bank gland area of juvenile males. After they reached sexual maturity, however, the number of compounds detected from the Rank gland secretions increased significantly. At the beginning of the reproductive season 48 different compounds were detected from male flank gland secretions. In the middle of the breeding season 70 compounds were detected, while only 11 compounds were detected during the nonbreeding season. Few compounds were common to all males. There were more volatile compounds in the Bank gland secretions of males in the beginning of the breeding season than later in the breeding season. Males from the same population had fewer differences in the elution profile of compounds than males from different populations indicating that individuals from a distinct population have similar elution profiles of compounds and that each population has its own type of elution profile. No correlations were found between the number of compounds detected by gas chromatography for each male and the male's body mass or flank gland size. Blood parasites (trypanosomes, Trypanosoma crocidurae) were found in only three of 30 males investigated

    Coding of group odor in the subcaudal gland secreation of the European badger Meles meles: chemical composition and pouch microbiota

    No full text
    The fermentation hypothesis predicts that odor profiles of mammals depend partly on the primary gland products excreted by the animal and partly on the composition of the bacterial flora converting these into secondary metabolites. Some mammalian odors, such as shared group odors, however, need to be consistent yet flexible (e.g., to allow for changes in social-group affiliation), and are thus predisposed for microbial mediation. Using terminal restriction fragment (TRF) length polymorphism analyses we analyzed the microbial community in subcaudal-gland secretions of European badgers (Meles meles) in relation to the chemical scent profiles as determined by gas chromatography-mass spectrometry analyses (GCMS) of 66 adults belonging to six different social groups. We found a total of 50 TRFs and 125 different chemical compounds with a subset of four TRFs best explaining the structure in the chemical matrix. Nevertheless, although semiochemical profiles were group specific, microbial profiles were not. In our approach, however, the number of operational taxonomic units exceeded the numbers of TRFs, and thus our analyses were likely limited by the afforded resolution. As it is likely that the variation in metabolic activity is found at the species-, subspecies-, or even strain-level, future high-throughput sequencing can be expected to reveal more subtle differences in the microbial communities between social groups
    corecore