114 research outputs found
Effects of quasiparticle tunneling in a circuit-QED realization of a strongly driven two-level system
We experimentally and theoretically study the frequency shift of a driven
cavity coupled to a superconducting charge qubit. In addition to previous
studies, we here also consider drive strengths large enough to energetically
allow for quasiparticle creation. Quasiparticle tunneling leads to the
inclusion of more than two charge states in the dynamics. To explain the
observed effects, we develop a master equation for the microwave dressed charge
states, including quasiparticle tunneling. A bimodal behavior of the frequency
shift as a function of gate voltage can be used for sensitive charge detection.
However, at weak drives the charge sensitivity is significantly reduced by
non-equilibrium quasiparticles, which induce transitions to a non-sensitive
state. Unexpectedly, at high enough drives, quasiparticle tunneling enables a
very fast relaxation channel to the sensitive state. In this regime, the charge
sensitivity is thus robust against externally injected quasiparticles and the
desired dynamics prevail over a broad range of temperatures. We find very good
agreement between theory and experiment over a wide range of drive strengths
and temperatures.Comment: 25 pages, 7 figure
Near-Field Scanning Microwave Microscopy in the Single Photon Regime
The microwave properties of nano-scale structures are important in a wide
variety of applications in quantum technology. Here we describe a low-power
cryogenic near-field scanning microwave microscope (NSMM) which maintains
nano-scale dielectric contrast down to the single microwave photon regime, up
to times lower power than in typical NSMMs. We discuss the remaining
challenges towards developing nano-scale NSMM for quantum coherent interaction
with two-level systems as an enabling tool for the development of quantum
technologies in the microwave regime
Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator
We demonstrate the coupling of rare-earth ions locally implanted in a
substrate (Gd in AlO) to a superconducting NbN
lumped-element micro-resonator. The hybrid device is fabricated by a controlled
ion implantation of rare-earth ions in well-defined micron-sized areas, aligned
to lithographically defined micro-resonators. The technique does not degrade
the internal quality factor of the resonators which remain above .
Using microwave absorption spectroscopy we observe electron-spin resonances in
good agreement with numerical modelling and extract corresponding coupling
rates of the order of MHz and spin linewidths of MHz.Comment: 4 pages, 2 Figure
Dynamic parity recovery in a strongly driven Cooper-pair box
We study a superconducting charge qubit coupled to an intensive
electromagnetic field and probe changes in the resonance frequency of the
formed dressed states. At large driving strengths, exceeding the qubit
energy-level splitting, this reveals the well known Landau-Zener-Stuckelberg
(LZS) interference structure of a longitudinally driven two-level system. For
even stronger drives we observe a significant change in the LZS pattern and
contrast. We attribute this to photon-assisted quasiparticle tunneling in the
qubit. This results in the recovery of the qubit parity, eliminating effects of
quasiparticle poisoning and leads to an enhanced interferometric response. The
interference pattern becomes robust to quasiparticle poisoning and has a good
potential for accurate charge sensing.Comment: 5 pages, 4 figure
Fast tunable high Q-factor superconducting microwave resonators
We present fast tunable superconducting microwave resonators fabricated from
planar NbN on a sapphire substrate. The wavelength resonators are
tuning fork shaped and tuned by passing a dc current which controls the kinetic
inductance of the tuning fork prongs. The section from the open end
operates as an integrated impedance converter which creates a nearly perfect
short for microwave currents at the dc terminal coupling points, thus
preventing microwave energy leakage through the dc lines. We measure an
internal quality factor over the entire tuning range. We
demonstrate a tuning range of and tuning response times as short as 20
ns for the maximum achievable detuning. Due to the quasi-fractal design, the
resonators are resilient to magnetic fields of up to 0.5 T
Tunneling through a multigrain system: deducing the sample topology from the nonlinear conductance
We study a current transport through a system of a few grains connected with
tunneling links. The exact solution is given for an arbitrarily connected
double-grain system with a shared gate in the framework of the orthodox model.
The obtained result is generalized for multigrain systems with strongly
different tunneling resistances. We analyse the large-scale nonlinear
conductance and demonstrate how the sample topology can be unambiguously
deduced from the spectroscopy pattern (differential conductance versus
gate-bias plot). We present experimental data for a multigrain sample and
reconstruct the sample topology. A simple selection rule is formulated to
distinguish samples with spectral patterns free from spurious disturbance
caused by recharging of some grains nearby. As an example, we demonstrate
experimental data with additional peaks in the spectroscopy pattern, which can
not be attributed to coupling to additional grains. The described approach can
be used to judge the sample topology when it is not guaranteed by fabrication
and direct imaging is not possible.Comment: 13 pages (including 8 figures
Two-level systems in superconducting quantum devices due to trapped quasiparticles
A major issue for the implementation of large scale superconducting quantum
circuits is the interaction with interfacial two-level system defects (TLS)
that leads to qubit relaxation and impedes qubit operation in certain frequency
ranges that also drift in time. Another major challenge comes from
non-equilibrium quasiparticles (QPs) that result in qubit dephasing and
relaxation. In this work we show that such QPs can also serve as a source of
TLS. Using spectral and temporal mapping of TLS-induced fluctuations in
frequency tunable resonators, we identify a subset of the general TLS
population that are highly coherent TLS with a low reconfiguration temperature
300 mK, and a non-uniform density of states. These properties can be
understood if these TLS are formed by QPs trapped in shallow subgap states
formed by spatial fluctutations of the superconducting order parameter
. Magnetic field measurements of one such TLS reveals a link to
superconductivity. Our results imply that trapped QPs can induce qubit
relaxation.Comment: 7 pages, 4 figures, plus 18 pages, 13 figures supplementa
First-principles modelling of molecular single-electron transistors
We present a first-principles method for calculating the charging energy of a
molecular single-electron transistor operating in the Coulomb blockade regime.
The properties of the molecule are modeled using density-functional theory, the
environment is described by a continuum model, and the interaction between the
molecule and the environment are included through the Poisson equation. The
model is used to calculate the charge stability diagrams of a benzene and
C molecular single-electron transistor
- …