36,394 research outputs found

    Automated design of minimum drag light aircraft fuselages and nacelles

    Get PDF
    The constrained minimization algorithm of Vanderplaats is applied to the problem of designing minimum drag faired bodies such as fuselages and nacelles. Body drag is computed by a variation of the Hess-Smith code. This variation includes a boundary layer computation. The encased payload provides arbitrary geometric constraints, specified a priori by the designer, below which the fairing cannot shrink. The optimization may include engine cooling air flows entering and exhausting through specific port locations on the body

    A computer program for calculating symmetrical aerodynamic characteristics and lateral-directional stability derivatives of wing-body combinations with blowing jets

    Get PDF
    The necessary information for using a computer program to calculate the aerodynamic characteristics under symmetrical flight conditions and the lateral-directional stability derivatives of wing-body combinations with upper-surface-blowing (USB) or over-wing-blowing (OWB) jets are described. The following new features were added to the program: (1) a fuselage of arbitrary body of revolution has been included. The effect of wing-body interference can now be investigated, and (2) all nine lateral-directional stability derivatives can be calculated. The program is written in FORTRAN language and runs on CDC Cyber 175 and Honeywell 66/60 computers

    Human acclimation and acclimatization to heat: A compendium of research, 1968-1978

    Get PDF
    Abstracts and annotations of the majority of scientific works that elucidate the mechanisms of short-term acclimation to heat in men and women are presented. The compendium includes material from 1968 through 1977. Subject and author indexes are provided and additional references of preliminary research findings or work of a peripheral nature are included in a bibliography

    Amino acids precursors in lunar finds

    Get PDF
    The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon

    A Positivity Theorem for Gravitational Tension in Brane Spacetimes

    Full text link
    We study transverse asymptotically flat spacetimes without horizons that arise from brane matter sources. We assume that asymptotically there is a spatial translation Killing vector that is tangent to the brane. Such spacetimes are characterized by a tension, analogous to the ADM mass, which is a gravitational charge associated with the asymptotic spatial translation Killing vector. Using spinor techniques, we prove that the purely gravitational contribution to the spacetime tension is positive definite.Comment: 8+1 page

    Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    Get PDF
    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine applications. Protective coatings and/or inlet air filtration may be required to achieve required ceramic component lives in more aggressive environments
    corecore