111 research outputs found

    Derivation and test of high order fluid model for streamer discharges

    Get PDF
    A high order fluid model for streamer dynamics is developed by closing the system after the 4th moment of the Boltzmann equation in local mean energy approximation. This is done by approximating the high order pressure tensor in the heat flux equation through the previous moments. Mathematical characteristics of the system is studied. Then planar ionization fronts for negative streamers in Nsub2 are simulated with the classical streamer model, MC-PIC particle model, and with the present higher order model

    On the approximation of transport properties in structured materials using momentum-transfer theory

    Get PDF
    In this paper, we present a fluid model for electrons and positrons in structured and soft-condensed matter utilizing dilute gas phase cross-sections together with a structure factor for the medium. Generalizations of the Wannier energy and Einstein (Nernst–Townsend) relations to account for coherent scattering effects present in soft-condensed matter are presented along with new expressions directly relating transport properties in the dilute gas and the structured matter phases. The theory is applied to electrons in a benchmark Percus–Yevick model and positrons in liquid argon, and the accuracy is tested against a multi-term solution of Boltzmann's equation (White and Robson 2011 Phys. Rev. E 84 031125)

    Data for Modeling of Positron Collisions and Transport in Gases

    Get PDF
    We review the current status of positron cross sections for collisions with atoms and molecules from the viewpoint of their use in studies of positron transport processes in gases, liquids and human tissue. The data include cross sections for positron scaThis work is supported by MNPRS Projects ON171037 and III41011 and the Australian Research Council’s Centre of Excellence Program

    Positron transport in water vapour

    Get PDF
    Transport properties of positron swarms in water vapour under the influence of electric and magnetic fields are investigated using a Monte Carlo simulation technique and a multi-term theory for solving the Boltzmann equation. Special attention is paid to the correct treatment of the non-conservative nature of positronium (Ps) formation and its explicit and implicit influences on various positron transport properties. Many interesting and atypical phenomena induced by these influences are identified and discussed. Calculated transport properties for positrons are compared with those for electrons, and the most important differences are highlighted. The significant impact of a magnetic field on non-conservative positron transport in a crossed field configuration is also investigated. In general, the mean energy and diffusion coefficients are lowered, while for the measurable drift velocity an unexpected phenomenon arises: for certain values of the reduced electric field, the magnetic field enhances the drift. The variation of transport coefficients with the reduced electric and magnetic fields is addressed using physical arguments with the goal of understanding the synergistic effects of Ps formation and magnetic field on the drift and diffusion of positrons in neutral gases

    Positron transport: the plasma-gas interface

    No full text
    Motivated by an increasing number of applications, new techniques in the analysis of electron transport have been developed over the past 30 years or so, but similar methods had yet to be applied to positrons. Recently, an in-depth look at positrontransport in pure argon gas has been performed using a recently established comprehensive set of cross sections and well-established Monte Carlo simulations. The key novelty as compared to electron transport is the effect of positronium formation which changes the number of particles and has a strong energy dependence. This coupled with spatial separation by energy of the positron swarm leads to counterintuitive behavior of some of the transport coefficients. Finally new results in how the presence of an applied magnetic field affects the transport coefficients are presented.This work was performed under MNTRS Project No. 141025
    • …
    corecore