34 research outputs found

    Microscopic model for Bose-Einstein condensation and quasiparticle decay

    Full text link
    Sufficiently dimerized quantum antiferromagnets display elementary S=1 excitations, triplon quasiparticles, protected by a gap at low energies. At higher energies, the triplons may decay into two or more triplons. A strong enough magnetic field induces Bose-Einstein condensation of triplons. For both phenomena the compound IPA-CuCl3 is an excellent model system. Nevertheless no quantitative model was determined so far despite numerous studies. Recent theoretical progress allows us to analyse data of inelastic neutron scattering (INS) and of magnetic susceptibility to determine the four magnetic couplings J1=-2.3meV, J2=1.2meV, J3=2.9meV and J4=-0.3meV. These couplings determine IPA-CuCl3 as system of coupled asymmetric S=1/2 Heisenberg ladders quantitatively. The magnetic field dependence of the lowest modes in the condensed phase as well as the temperature dependence of the gap without magnetic field corroborate this microscopic model.Comment: 6 pages, 5 figure

    Adapted continuous unitary transformation to treat systems with quasiparticles of finite lifetime

    Full text link
    An improved generator for continuous unitary transformations is introduced to describe systems with unstable quasiparticles. Its general properties are derived and discussed. To illustrate this approach we investigate the asymmetric antiferromagnetic spin-1/2 Heisenberg ladder which allows for spontaneous triplon decay. We present results for the low energy spectrum and the momentum resolved spectral density of this system. In particular, we show the resonance behavior of the decaying triplon explicitly.Comment: 40 pages, 12 figure

    Hole Dispersions for Antiferromagnetic Spin-1/2 Two-Leg Ladders by Self-Similar Continuous Unitary Transformations

    Full text link
    The hole-doped antiferromagnetic spin-1/2 two-leg ladder is an important model system for the high-TcT_c superconductors based on cuprates. Using the technique of self-similar continuous unitary transformations we derive effective Hamiltonians for the charge motion in these ladders. The key advantage of this technique is that it provides effective models explicitly in the thermodynamic limit. A real space restriction of the generator of the transformation allows us to explore the experimentally relevant parameter space. From the effective Hamiltonians we calculate the dispersions for single holes. Further calculations will enable the calculation of the interaction of two holes so that a handle of Cooper pair formation is within reach.Comment: 16 pages, 26 figure

    From Gapped Excitons to Gapless Triplons in One Dimension

    Full text link
    Often, exotic phases appear in the phase diagrams between conventional phases. Their elementary excitations are of particular interest. Here, we consider the example of the ionic Hubbard model in one dimension. This model is a band insulator (BI) for weak interaction and a Mott insulator (MI) for strong interaction. Inbetween, a spontaneously dimerized insulator (SDI) occurs which is governed by energetically low-lying charge and spin degrees of freedom. Applying a systematically controlled version of the continuous unitary transformations (CUTs) we are able to determine the dispersions of the elementary charge and spin excitations and of their most relevant bound states on equal footing. The key idea is to start from an externally dimerized system using the relative weak interdimer coupling as small expansion parameter which finally is set to unity to recover the original model.Comment: 18 pages, 10 figure

    Size-Selected Ag Nanoparticles with Five-Fold Symmetry

    Get PDF
    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications

    Softlanding and STM imaging of Ag (561) clusters on a C (60) monolayer

    No full text
    The low energy deposition of silver cluster cations with 561 (+/- 5) atoms on a cold fullerene covered gold surface has been studied both by scanning tunneling microscopy and molecular dynamics simulation. The special properties of the C-60/Au(111) surface result in a noticeable fixation of the clusters without a significant change of the cluster shape. Upon heating to room temperature we observe a flattening or shrinking of the cluster samples due to thermal activation. Similar changes were observed also for mass selected Ag clusters with other sizes. For comparison we also studied Ag islands of similar size, grown by low temperature deposition of Ag atoms and subsequent annealing. A completely different behavior is observed with much broader size distributions and a qualitatively different response to annealing
    corecore