4,648 research outputs found

    Astrometric and photometric initial mass functions from the UKIDSS Galactic Clusters Survey - II. The Alpha Persei open cluster

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present the results of a deep (J = 19.1mag) infrared (ZYJHK) survey over the full α Per open cluster extracted from the Data Release 9 of the United Kingdom Infrared Telescope Infrared Deep Sky Survey Galactic Clusters Survey (UKIDSS). We have selected ∼700 cluster member candidates in ∼56 square degrees in α Per by combining photometry in five near-infrared passbands and proper motions derived from the multiple epochs provided by the UKIDSS Galactic Clusters Survey (GCS) Data Release 9 (DR9). We also provide revised membership for all previously published α Per low-mass stars and brown dwarfs recovered in GCS based on the new photometry and astrometry provided by DR9. We find no evidence of K-band variability in members of α Per with dispersion less than 0.06-0.09mag. We employed two independent but complementary methods to derive the cluster luminosity and mass functions: a probabilistic analysis and a more standard approach consisting of stricter astrometric and photometric cuts. We find that the resulting luminosity and mass functions obtained from both methods are consistent. We find that the shape of the α Per mass function is similar to that of the Pleiades although the characteristic mass may be higher after including higher mass data from earlier studies (the dispersion is comparable). We conclude that the mass functions of α Per, the Pleiades and Praesepe are best reproduced by a log-normal representation similar to the system field mass function although with some variation in the characteristic mass and dispersion values.Peer reviewe

    Dynamical phase transition of a 1D transport process including death

    Full text link
    Motivated by biological aspects related to fungus growth, we consider the competition of growth and corrosion. We study a modification of the totally asymmetric exclusion process, including the probabilities of injection α\alpha and death of the last particle δ\delta. The system presents a phase transition at δc(α)\delta_c(\alpha), where the average position of the last particle grows as t\sqrt{t}. For δ>δc\delta>\delta_c, a non equilibrium stationary state exists while for δ<δc\delta<\delta_c the asymptotic state presents a low density and max current phases. We discuss the scaling of the density and current profiles for parallel and sequential updates.Comment: 4 pages, 5 figure

    Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction

    Full text link
    We measure the non-dissipative supercurrent in a single InAs self-assembled quantum dot (QD) coupled to superconducting leads. The QD occupation is both tuned by a back-gate electrode and lateral side-gate. The geometry of the side-gate allows tuning of the QD-lead tunnel coupling in a region of constant electron number with appropriate orbital state. Using the side-gate effect we study the competition between Kondo correlations and superconducting pairing on the QD, observing a decrease in the supercurrent when the Kondo temperature is reduced below the superconducting energy gap in qualitative agreement with theoretical predictions

    Inter-band magnetoplasmons in mono- and bi-layer graphene

    Full text link
    Collective excitations spectrum of Dirac electrons in mono and bilayer graphene in the presence of a uniform magnetic field is investigated. Analytical results for inter-Landau band plasmon spectrum within the self-consistent-field approach are obtained. SdH type oscillations that are a monotonic function of the magnetic field are observed in the plasmon spectrum of both mono- and bi-layer graphene systems. The results presented are also compared with those obtained in conventional 2DEG. The chiral nature of the quasiparticles in mono and bilayer graphene system results in the observation of π\pi and 2π2\pi Berry's phase in the SdH- type oscillations in the plasmon spectrum.Comment: 9 pages, 2 figure

    The role of orthographic and semantic learning in word reading and reading comprehension

    Get PDF
    We tested the theoretically driven hypotheses that children’s orthographic and semantic learning are associated with their word reading and reading comprehension skills, even when orthographic and semantic knowledge are taken into account. A sample of 139 English-speaking Grade 3 children completed a learning task in which they read stories about new inventions. Then they were tested on their learning of the spelling and meaning of the inventions (i.e., orthographic and semantic learning, respectively). Word reading and reading comprehension were assessed with standardised tasks, and orthographic and semantic knowledge were assessed with choice tasks targeting the spelling and meaning of existing words. The results of our structural equation modeling indicated that orthographic learning predicted word reading directly and reading comprehension indirectly via word reading. We also found that semantic learning predicted reading comprehension directly. These findings support integration of the self-teaching hypothesis and the lexical quality hypothesis

    Superlattice Magnetophonon Resonances in Strongly Coupled InAs/GaSb Superlattices

    Full text link
    We report an experimental study of miniband magnetoconduction in semiconducting InAs/GaSb superlattices. For samples with miniband widths below the longitudinal optical phonon energy we identify a new superlattice magnetophonon resonance (SLMPR) caused by resonant scattering of electrons across the mini-Brillouin zone. This new resonant feature arises directly from the drift velocity characteristics of the superlattice dispersion and total magnetic quantisation of the superlattice Landau level minibands.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Simplifying ARM concurrency: Multicopy-atomic axiomatic and operational models for ARMv8

    Get PDF
    ARM has a relaxed memory model, previously specified in informal prose for ARMv7 and ARMv8. Over time, and partly due to work building formal semantics for ARM concurrency, it has become clear that some of the complexity of the model is not justified by the potential benefits. In particular, the model was originally non-multicopy-atomic : writes could become visible to some other threads before becoming visible to all — but this has not been exploited in production implementations, the corresponding potential hardware optimisations are thought to have insufficient benefits in the ARM context, and it gives rise to subtle complications when combined with other ARMv8 features. The ARMv8 architecture has therefore been revised: it now has a multicopy-atomic model. It has also been simplified in other respects, including more straightforward notions of dependency, and the architecture now includes a formal concurrency model. In this paper we detail these changes and discuss their motivation. We define two formal concurrency models: an operational one, simplifying the Flowing model of Flur et al., and the axiomatic model of the revised ARMv8 specification. The models were developed by an academic group and by ARM staff, respectively, and this extended collaboration partly motivated the above changes. We prove the equivalence of the two models. The operational model is integrated into an executable exploration tool with new web interface, demonstrated by exhaustively checking the possible behaviours of a loop-unrolled version of a Linux kernel lock implementation, a previously known bug due to unprevented speculation, and a fixed version.</jats:p
    • …
    corecore