2,560 research outputs found
New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range
We present a method for producing sub-100 fs electron bunches that are
suitable for single-shot ultrafast electron diffraction experiments in the 100
keV energy range. A combination of analytical results and state-of-the-art
numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs
electron bunches with a spotsize smaller than 500 micron and a transverse
coherence length of 3 nm, using established technologies in a table-top set-up.
The system operates in the space-charge dominated regime to produce
energy-correlated bunches that are recompressed by established radio-frequency
techniques. With this approach we overcome the Coulomb expansion of the bunch,
providing an entirely new ultrafast electron diffraction source concept
Matter profile effect in neutrino factory
We point out that the matter profile effect --- the effect of matter density
fluctuation on the baseline --- is very important to estimate the parameters in
a neutrino factory with a very long baseline. To make it clear, we propose the
method of the Fourier series expansion of the matter profile. By using this
method, we can take account of both the matter profile effect and its
ambiguity. For very long baseline experiment, such as L=7332km, in the analysis
of the oscillation phenomena we need to introduce a new parameter ---
the Fourier coefficient of the matter profile --- as a theoretical parameter to
deal with the matter profile effects.Comment: 21 pages, 15 figure
Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction
We demonstrate compression of 95 keV, space-charge-dominated electron bunches
to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are
of sufficient quality to capture a diffraction pattern with a single shot,
which we demonstrate by a diffraction experiment on a polycrystalline gold
foil. Compression is realized by means of velocity bunching as a result of a
velocity chirp, induced by the oscillatory longitudinal electric field of a 3
GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs
On the complementarity of Hyper-K and LBNF
The next generation of long-baseline experiments is being designed to make a
substantial step in the precision of measurements of neutrino-oscillation
probabilities. Two qualitatively different proposals, Hyper-K and LBNF, are
being considered for approval. This document outlines the complimentarity
between Hyper-K and LBNF.Comment: 5 pager
Initial report from the ICFA Neutrino Panel
In July 2013 ICFA established the Neutrino Panel with the mandate "To promote
international cooperation in the development of the accelerator-based
neutrino-oscillation program and to promote international collaboration in the
development a neutrino factory as a future intense source of neutrinos for
particle physics experiments". This, the Panel's Initial Report, presents the
conclusions drawn by the Panel from three regional "Town Meetings" that took
place between November 2013 and February 2014.
After a brief introduction and a short summary of the status of the knowledge
of the oscillation parameters, the report summarises the approved programme and
identifies opportunities for the development of the field. In its conclusions,
the Panel recognises that to maximise the discovery potential of the
accelerator-based neutrino-oscillation programme it will be essential to
exploit the infrastructures that exist at CERN, FNAL and J-PARC and the
expertise and resources that reside in laboratories and institutes around the
world. Therefore, in its second year, the Panel will consult with the
accelerator-based neutrino-oscillation community and its stakeholders to:
develop a road-map for the future accelerator-based neutrino-oscillation
programme that exploits the ambitions articulated at CERN, FNAL and J-PARC and
includes the programme of measurement and test-beam exposure necessary to
ensure the programme is able to realise its potential; develop a proposal for a
coordinated "Neutrino RD" programme, the accelerator and detector R&D programme
required to underpin the next generation of experiments; and to explore the
opportunities for the international collaboration necessary to realise the
Neutrino Factory.Comment: ICFA Neutrino Panel 2014(01
- …