57 research outputs found

    Early-life exposure to environmental contaminants perturbs the sperm epigenome and induces negative pregnancy outcomes for three generations via the paternal lineage

    Get PDF
    Due to the grasshopper effect, the Arctic food chain in Canada is contaminated with persistent organic pollutants (POPs) of industrial origin, including polychlorinated biphenyls and organochlorine pesticides. Exposure to POPs may be a contributor to the greater incidence of poor fetal growth, placental abnormalities, stillbirths, congenital defects and shortened lifespan in the Inuit population compared to non-Aboriginal Canadians. Although maternal exposure to POPs is well established to harm pregnancy outcomes, paternal transmission of the effects of POPs is a possibility that has not been well investigated. We used a rat model to test the hypothesis that exposure to POPs during gestation and suckling leads to developmental defects that are transmitted to subsequent generations via the male lineage. Indeed, developmental exposure to an environmentally relevant Arctic POPs mixture impaired sperm quality and pregnancy outcomes across two subsequent, unexposed generations and altered sperm DNA methylation, some of which are also observed for two additional generations. Genes corresponding to the altered sperm methylome correspond to health problems encountered in the Inuit population. These findings demonstrate that the paternal methylome is sensitive to the environment and that some perturbations persist for at least two subsequent generations. In conclusion, although many factors influence health, paternal exposure to contaminants plays a heretofore-underappreciated role with sperm DNA methylation contributing to the molecular underpinnings involved

    Computational Prediction of Host-Parasite Protein Interactions between P. falciparum and H. sapiens

    Get PDF
    To obtain candidates of interactions between proteins of the malaria parasite Plasmodium falciparum and the human host, homologous and conserved interactions were inferred from various sources of interaction data. Such candidate interactions were assessed by applying a machine learning approach and further filtered according to expression and molecular characteristics, enabling involved proteins to indeed interact. The analysis of predicted interactions indicated that parasite proteins predominantly target central proteins to take control of a human host cell. Furthermore, parasite proteins utilized their protein repertoire in a combinatorial manner, providing a broad connection to host cellular processes. In particular, several prominent pathways of signaling and regulation proteins were predicted to interact with parasite chaperones. Such a result suggests an important role of remodeling proteins in the interaction interface between the human host and the parasite. Identification of such molecular strategies that allow the parasite to take control of the host has the potential to deepen our understanding of the parasite specific remodeling processes of the host cell and illuminate new avenues of disease intervention

    High Abundance Proteins Depletion vs Low Abundance Proteins Enrichment: Comparison of Methods to Reduce the Plasma Proteome Complexity

    Get PDF
    BACKGROUND: To date, the complexity of the plasma proteome exceeds the analytical capacity of conventional approaches to isolate lower abundance proteins that may prove to be informative biomarkers. Only complex multistep separation strategies have been able to detect a substantial number of low abundance proteins (<100 ng/ml). The first step of these protocols is generally the depletion of high abundance proteins by the use of immunoaffinity columns or, alternatively, the enrichment of by the use of solid phase hexapeptides ligand libraries. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a direct comparison of these two approaches. Following either approach, the plasma sample was further fractionated by SCX chromatography and analyzed by RP-LC-MS/MS with a Q-TOF mass spectrometer. The depletion of the 20 most abundant plasma proteins allowed the identification of about 25% more proteins than those detectable following low abundance proteins enrichment. The two datasets are partially overlapping and the identified proteins belong to the same order of magnitude in terms of plasma concentration. CONCLUSIONS/SIGNIFICANCE: Our results show that the two approaches give complementary results. However, the enrichment of low abundance proteins has the great advantage of obtaining much larger amount of material that can be used for further fractionations and analyses and emerges also as a cheaper and technically simpler approach. Collectively, these data indicate that the enrichment approach seems more suitable as the first stage of a complex multi-step fractionation protocol

    A mathematical model of cell cycle progression applied to the MCF-7 breast cancer cell line

    No full text
    In this paper, we present a model of cell cycle progression and apply it to cells of the MCF-7 breast cancer cell line. We consider cells existing in the three typical cell cycle phases determined using flow cytometry: the G1, S, and G2/M phases. We further break each phase up into model phases in order to capture certain features such as cells remaining in phases for a minimum amount of time. The model is also able to capture the environmentally responsive part of the G1 phase, allowing for quantification of the number of environmentally responsive cells at each point in time. The model parameters are carefully chosen using data from various sources in the biological literature. The model is then validated against a variety of experiments, and the excellent fit with experimental results allows for insight into the mechanisms that influence observed biological phenomena. In particular, the model is used to question the common assumption that a 'slow cycling population' is necessary to explain some results. Finally, an extension is proposed, where cell death is included in order to accurately model the effects of tamoxifen, a common first line anticancer drug in breast cancer patients. We conclude that the model has strong potential to be used as an aid in future experiments to gain further insight into cell cycle progression and cell death.Kate Simms, Nigel Bean, Adrian Koerbe
    • …
    corecore