8,016 research outputs found

    Finite Size Effect in Persistence

    Full text link
    We have investigated the random walk problem in a finite system and studied the crossover induced in the the persistence probability scales by the system size.Analytical and numerical work show that the scaling function is an exponentially decaying function.The particle here is trapped with in a box of size LL . We have also considered the problem when the particle in trapped in a potential. Direct calculation and numerical result show that the scaling function here also an exponentially decaying function. We also present numerical works on harmonically trapped randomly accelerated particle and randomly accelerated particle with viscous drag.Comment: revtex4, 4 pages, 4 figure

    Coupling Nitrogen Vacancy Centers in Diamond to Superconducting Flux Qubits

    Get PDF
    We propose a method to achieve coherent coupling between Nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light.Comment: Accepted in Phys. Rev. Lett. Updated text and Supplementary Material adde

    Intercept-resend attacks in the Bennett-Brassard 1984 quantum key distribution protocol with weak coherent pulses

    Full text link
    Unconditional security proofs of the Bennett-Brassard protocol of quantum key distribution have been obtained recently. These proofs cover also practical implementations that utilize weak coherent pulses in the four signal polarizations. Proven secure rates leave open the possibility that new proofs or new public discussion protocols obtain larger rates over increased distance. In this paper we investigate limits to error rate and signal losses that can be tolerated by future protocols and proofs.Comment: 11 pages, 3 figures. Version accepted for publication in Phys. Rev.

    Predictions for Triple Stars with and without a Pulsar in Star Clusters

    Full text link
    Though about 80 pulsar binaries have been detected in globular clusters so far, no pulsar has been found in a triple system in which all three objects are of comparable mass. Here we present predictions for the abundance of such triple systems, and for the most likely characteristics of these systems. Our predictions are based on an extensive set of more than 500 direct simulations of star clusters with primordial binaries, and a number of additional runs containing primordial triples. Our simulations employ a number N_{tot} of equal mass stars from N_{tot}=512 to N_{tot}=19661 and a primordial binary fraction from 0-50%. In addition, we validate our results against simulations with N=19661 that include a mass spectrum with a turn-off mass at 0.8 M_{sun}, appropriate to describe the old stellar populations of galactic globular clusters. Based on our simulations, we expect that typical triple abundances in the core of a dense cluster are two orders of magnitude lower than the binary abundances, which in itself already suggests that we don't have to wait too long for the first comparable-mass triple with a pulsar to be detected.Comment: 11 pages, minor changes to match MNRAS accepted versio

    Understanding Student Computational Thinking with Computational Modeling

    Full text link
    Recently, the National Research Council's framework for next generation science standards highlighted "computational thinking" as one of its "fundamental practices". 9th Grade students taking a physics course that employed the Modeling Instruction curriculum were taught to construct computational models of physical systems. Student computational thinking was assessed using a proctored programming assignment, written essay, and a series of think-aloud interviews, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Roughly a third of the students in the study were successful in completing the programming assignment. Student success on this assessment was tied to how students synthesized their knowledge of physics and computation. On the essay and interview assessments, students displayed unique views of the relationship between force and motion; those who spoke of this relationship in causal (rather than observational) terms tended to have more success in the programming exercise.Comment: preprint to submit to PERC proceedings 201
    corecore