8,341 research outputs found

    Functional Renormalization of Noncommutative Scalar Field Theory

    Full text link
    In this paper we apply the Functional Renormalization Group Equation (FRGE) to the non-commutative scalar field theory proposed by Grosse and Wulkenhaar. We derive the flow equation in the matrix representation and discuss the theory space for the self-dual model. The features introduced by the external dimensionful scale provided by the non-commutativity parameter, originally pointed out in \cite{Gurau:2009ni}, are discussed in the FRGE context. Using a technical assumption, but without resorting to any truncation, it is then shown that the theory is asymptotically safe for suitably small values of the ϕ4\phi^4 coupling, recovering the result of \cite{disertori:2007}. Finally, we show how the FRGE can be easily used to compute the one loop beta-functions of the duality covariant model.Comment: 38 pages, no figures, LaTe

    Spectral noncommutative geometry and quantization: a simple example

    Get PDF
    We explore the relation between noncommutative geometry, in the spectral triple formulation, and quantum mechanics. To this aim, we consider a dynamical theory of a noncommutative geometry defined by a spectral triple, and study its quantization. In particular, we consider a simple model based on a finite dimensional spectral triple (A, H, D), which mimics certain aspects of the spectral formulation of general relativity. We find the physical phase space, which is the space of the onshell Dirac operators compatible with A and H. We define a natural symplectic structure over this phase space and construct the corresponding quantum theory using a covariant canonical quantization approach. We show that the Connes distance between certain two states over the algebra A (two ``spacetime points''), which is an arbitrary positive number in the classical noncommutative geometry, turns out to be discrete in the quantum theory, and we compute its spectrum. The quantum states of the noncommutative geometry form a Hilbert space K. D is promoted to an operator *D on the direct product *H of H and K. The triple (A, *H, *D) can be viewed as the quantization of the family of the triples (A, H, D).Comment: 7 pages, no figure

    Geometry of the Grosse-Wulkenhaar Model

    Full text link
    We define a two-dimensional noncommutative space as a limit of finite-matrix spaces which have space-time dimension three. We show that on such space the Grosse-Wulkenhaar (renormalizable) action has natural interpretation as the action for the scalar field coupled to the curvature. We also discuss a natural generalization to four dimensions.Comment: 16 pages, version accepted in JHE

    Noncommutative QFT and Renormalization

    Get PDF
    Field theories on deformed spaces suffer from the IR/UV mixing and renormalization is generically spoiled. In work with R. Wulkenhaar, one of us realized a way to cure this disease by adding one more marginal operator. We review these ideas, show the application to ϕ3\phi^3 models and use the heat kernel expansion methods for a scalar field theory coupled to an external gauge field on a θ\theta-deformed space and derive noncommutative gauge field actions.Comment: To appear in the proceedings of the Workshop "Noncommutative Geometry in Field and String Theory", Corfu, 2005 (Greece

    Noncommutative Chiral Anomaly and the Dirac-Ginsparg-Wilson Operator

    Get PDF
    It is shown that the local axial anomaly in 22-dimensions emerges naturally if one postulates an underlying noncommutative fuzzy structure of spacetime . In particular the Dirac-Ginsparg-Wilson relation on SF2{\bf S}^2_F is shown to contain an edge effect which corresponds precisely to the ``fuzzy'' U(1)AU(1)_A axial anomaly on the fuzzy sphere . We also derive a novel gauge-covariant expansion of the quark propagator in the form 1DAF=aΓ^L2+1DAa\frac{1}{{\cal D}_{AF}}=\frac{a\hat{\Gamma}^L}{2}+\frac{1}{{\cal D}_{Aa}} where a=22l+1a=\frac{2}{2l+1} is the lattice spacing on SF2{\bf S}^2_F, Γ^L\hat{\Gamma}^L is the covariant noncommutative chirality and DAa{\cal D}_{Aa} is an effective Dirac operator which has essentially the same IR spectrum as DAF{\cal D}_{AF} but differes from it on the UV modes. Most remarkably is the fact that both operators share the same limit and thus the above covariant expansion is not available in the continuum theory . The first bit in this expansion aΓ^L2\frac{a\hat{\Gamma}^L}{2} although it vanishes as it stands in the continuum limit, its contribution to the anomaly is exactly the canonical theta term. The contribution of the propagator 1DAa\frac{1}{{\cal D}_{Aa}} is on the other hand equal to the toplogical Chern-Simons action which in two dimensions vanishes identically .Comment: 26 pages, latex fil

    UV/IR duality in noncommutative quantum field theory

    Full text link
    We review the construction of renormalizable noncommutative euclidean phi(4)-theories based on the UV/IR duality covariant modification of the standard field theory, and how the formalism can be extended to scalar field theories defined on noncommutative Minkowski space.Comment: 12 pages; v2: minor corrections, note and references added; Contribution to proceedings of the 2nd School on "Quantum Gravity and Quantum Geometry" session of the 9th Hellenic School on Elementary Particle Physics and Gravity, Corfu, Greece, September 13-20 2009. To be published in General Relativity and Gravitatio

    Causal Consistency of Structural Equation Models

    Get PDF
    Complex systems can be modelled at various levels of detail. Ideally, causal models of the same system should be consistent with one another in the sense that they agree in their predictions of the effects of interventions. We formalise this notion of consistency in the case of Structural Equation Models (SEMs) by introducing exact transformations between SEMs. This provides a general language to consider, for instance, the different levels of description in the following three scenarios: (a) models with large numbers of variables versus models in which the `irrelevant' or unobservable variables have been marginalised out; (b) micro-level models versus macro-level models in which the macro-variables are aggregate features of the micro-variables; (c) dynamical time series models versus models of their stationary behaviour. Our analysis stresses the importance of well specified interventions in the causal modelling process and sheds light on the interpretation of cyclic SEMs.Comment: equal contribution between Rubenstein and Weichwald; accepted manuscrip

    Construction of wedge-local nets of observables through Longo-Witten endomorphisms. II

    Get PDF
    In the first part, we have constructed several families of interacting wedge-local nets of von Neumann algebras. In particular, there has been discovered a family of models based on the endomorphisms of the U(1)-current algebra of Longo-Witten. In this second part, we further investigate endomorphisms and interacting models. The key ingredient is the free massless fermionic net, which contains the U(1)-current net as the fixed point subnet with respect to the U(1) gauge action. Through the restriction to the subnet, we construct a new family of Longo-Witten endomorphisms on the U(1)-current net and accordingly interacting wedge-local nets in two-dimensional spacetime. The U(1)-current net admits the structure of particle numbers and the S-matrices of the models constructed here do mix the spaces with different particle numbers of the bosonic Fock space.Comment: 33 pages, 1 tikz figure. The final version is available under Open Access. CC-B

    Non-commutative SU(N) gauge theories and asymptotic freedom

    Get PDF
    In this paper we analyze the one-loop renormalization of the θ\theta-expanded SU(N)\rm SU(N) Yang-Mills theory. We show that the {\it freedom parameter} aa, key to renormalization, originates from higher order non-commutative gauge interaction, represented by a higher derivative term bhθμνF^μνF^ρσF^ρσ b h \theta^{\mu\nu}\hat F_{\mu\nu}\star\hat F_{\rho\sigma}\star\hat F^{\rho\sigma}. The renormalization condition fixes the allowed values of the parameter aa to one of the two solutions: a=1a=1 or a=3a=3, i.e. to b=0b=0 or to b=1/2b=1/2, respectively. When the higher order interaction is switched on, (a=3a=3), pure non-commutative SU(N) gauge theory at first order in θ\theta-expansion becomes one-loop renormalizable for various representations of the gauge group. We also show that, in the case a=3a=3 and the adjoint representation of the gauge fields, the non-commutative deformation parameter hh has to be renormalized and it is asymptotically free.Comment: 16 pages, no figure

    The One-loop UV Divergent Structure of U(1) Yang-Mills Theory on Noncommutative R^4

    Get PDF
    We show that U(1) Yang-Mills theory on noncommutative R^4 can be renormalized at the one-loop level by multiplicative dimensional renormalization of the coupling constant and fields of the theory. We compute the beta function of the theory and conclude that the theory is asymptotically free. We also show that the Weyl-Moyal matrix defining the deformed product over the space of functions on R^4 is not renormalized at the one-loop level.Comment: 8 pages. A missing complex "i" is included in the field strength and the divergent contributions corrected accordingly. As a result the model turns out to be asymptotically fre
    corecore