884 research outputs found

    A Critical Review of Anti‐Bullying Programs in North American Elementary Schools

    Full text link
    BACKGROUNDBullying behavior is a concern among school‐aged youth and anti‐bullying programs have been implemented in schools throughout North America. Most anti‐bullying programs are delivered to adolescent youth because antisocial‐aggressive behaviors are typically associated with this developmental stage. This paper is a review of empirically evaluated school‐based bullying prevention and intervention programs in North American elementary schools.METHODSWe conducted a systematic, critical review of bullying prevention programming. Data were analyzed to determine the study method, intervention components, measurement of bullying, aggression, or peer victimization, outcomes measured, and results.RESULTSOur review resulted in the identification of 10 interventions aimed at youth in grades K‐6 enrolled in North American elementary schools. Effective intervention strategies targeted a variety of bullying behaviors using diverse mechanisms and included a school—and community‐wide approach. Direct outcomes of the reviewed evaluations were centered on bullying, aggression, and victimization. Indirect outcomes of review evaluations included strategies for bystanders, school achievement, perceived school safety, and knowledge or attitudes about bullying.CONCLUSIONSRecommendations for promising practices in effective bullying intervention programming are offered. The review concludes with suggestions for supporting school health staff and in‐service teachers drawn from the body of research, and offers direction for future study.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151360/1/josh12814_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151360/2/josh12814.pd

    The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis

    Get PDF
    The Ribosomal Database Project (RDP-II) provides the research community with aligned and annotated rRNA gene sequences, along with analysis services and a phylogenetically consistent taxonomic framework for these data. Updated monthly, these services are made available through the RDP-II website (http://rdp.cme.msu.edu/). RDP-II release 9.21 (August 2004) contains 101 632 bacterial small subunit rRNA gene sequences in aligned and annotated format. High-throughput tools for initial taxonomic placement, identification of related sequences, probe and primer testing, data navigation and subalignment download are provided. The RDP-II email address for questions or comments is [email protected]

    Chapter: Landcare on the Poverty-Protection Interface in an Asian Watershed

    Get PDF
    Serious methodological and policy hurdles constrain effective natural resource management that alleviates poverty while protecting environmental services in tropical watersheds. We review the development of an approach to integrate biodiversity conservation and agroforestry development through the active involvement of communities and their local governments near the Kitanglad Range Natural Park in the Manupali watershed, central Mindanao, the Philippines. Agroforestry innovations were developed to suit the biophysical and socioeconomic conditions of the buffer zone. These included practices for tree farming, and conservation farming for annual cropping on slopes. Institutional innovations improved resource management, resulting in an effective social contract to protect the natural biodiversity o f the park. Fruit and timber tree production dramatically increased, re-establishing tree cover in the buffer zone. Natural vegetative contour strips were installed on several hundred sloping farms. Soil erosion and runoff declined, while the buffer strips increased maize yields by an average of 0.5 t/ha on hill-slope farms. The scientific knowledge base guided the development and implementation of a natural resource management plan for the municipality of Lantapan. A dynamic grassroots movement o f farmer-led Landcare groups evolved in the villages near the park boundary, which had significant impact on conservation in both the natural and managed ecosystems. Encroachment in the natural park was reduced 95% in three years. The local Landcare groups also restored stream corridor vegetation. This integrated approach has been recognized as a national model for local natural resource and watershed management in the Philippines. Currently, the collaborating institutions are evolving a negotiation support system to resolve the interactions between the three management domains: the park, the ancestral domain claim, and the municipalities. This integrated systems approach operated effectively with highly constrained funding, suggesting that commitment and impact may best be stimulated by a “drip-feed” approach rather than by large, externally funded efforts

    Analysis of the human cytomegalovirus genomic region from UL146 through UL147A reveals sequence hypervariability, genotypic stability, and overlapping transcripts

    Get PDF
    BACKGROUND: Although the sequence of the human cytomegalovirus (HCMV) genome is generally conserved among unrelated clinical strains, some open reading frames (ORFs) are highly variable. UL146 and UL147, which encode CXC chemokine homologues are among these variable ORFs. RESULTS: The region of the HCMV genome from UL146 through UL147A was analyzed in clinical strains for sequence variability, genotypic stability, and transcriptional expression. The UL146 sequences in clinical strains from two geographically distant sites were assigned to 12 sequence groups that differ by over 60% at the amino acid level. The same groups were generated by sequences from the UL146-UL147 intergenic region and the UL147 ORF. In contrast to the high level of sequence variability among unrelated clinical strains, the sequences of UL146 through UL147A from isolates of the same strain were highly stable after repeated passage both in vitro and in vivo. Riboprobes homologous to these ORFs detected multiple overlapping transcripts differing in temporal expression. UL146 sequences are present only on the largest transcript, which also contains all of the downstream ORFs including UL148 and UL132. The sizes and hybridization patterns of the transcripts are consistent with a common 3'-terminus downstream of the UL132 ORF. Early-late expression of the transcripts associated with UL146 and UL147 is compatible with the potential role of CXC chemokines in pathogenesis associated with viral replication. CONCLUSION: Clinical isolates from two different geographic sites cluster in the same groups based on the hypervariability of the UL146, UL147, or the intergenic sequences, which provides strong evidence for linkage and no evidence for interstrain recombination within this region. The sequence of individual strains was absolutely stable in vitro and in vivo, which indicates that sequence drift is not a mechanism for the observed sequence hypervariability. There is also no evidence of transcriptional splicing, although multiple overlapping transcripts extending into the adjacent UL148 and UL132 open reading frames were detected using gene-specific probes

    Resonant phonon coupling across the La{1-x}Sr{x}MnO{3}/SrTiO{3} interface

    Full text link
    The transport and magnetic properties of correlated La{0.53}Sr{0.47}MnO{3} ultrathin films, grown epitaxially on SrTiO{3}, show a sharp cusp at the structural transition temperature of the substrate. Using a combination of experiment and theory we show that the cusp is a result of resonant coupling between the charge carriers in the film and a soft phonon mode in the SrTiO{3}, mediated through oxygen octahedra in the film. The amplitude of the mode diverges towards the transition temperature, and phonons are launched into the first few atomic layers of the film affecting its electronic state

    The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data

    Get PDF
    Substantial new features have been implemented at the Ribosomal Database Project in response to the increased importance of high-throughput rRNA sequence analysis in microbial ecology and related disciplines. The most important changes include quality analysis, including chimera detection, for all available rRNA sequences and the introduction of myRDP Space, a new web component designed to help researchers place their own data in context with the RDP's data. In addition, new video tutorials describe how to use RDP features. Details about RDP data and analytical functions can be found at the RDP-II website ()

    Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-β-lactamase NDM-1

    Get PDF
    In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV–vis, 1H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data

    Identification of a Human Monoclonal Antibody to Replace Equine Diphtheria Anti-toxin for the Treatment of Diphtheria

    Get PDF
    Diphtheria anti-toxin (DAT) has been used to treat Corynebacterium diphtheriae infection for over one hundred years. While the global incidence of diphtheria has declined in the 20th century, the disease remains endemic in many parts of the world and significant outbreaks still occur. Diphtheria anti-toxin is an equine polyclonal antibody with considerable side effects that is in critically short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we cloned human monoclonal antibodies (HuMabs) directly from antibody secreting cells of human volunteers immunized with Td vaccine. We isolated a diverse panel of HuMabs that recognized diphtheria toxoid and recombinant protein fragments of diphtheria toxin. Forty-one unique HuMabs were expressed in 293T cells and tested for neutralization of diphtheria toxin in in vitro cytotoxicity assays. The lead candidate HuMab, 315C4 potently neutralized diphtheria toxin with an EC50 of 0.65 ng/mL. Additionally, 25 Îźg of 315C4 completely protected guinea pigs in an in vivo lethality model. In comparison, 1.6 IU of DAT was necessary for full protection resulting in an estimated relative potency of 64 IU/mg for 315C4. We further established that our lead candidate HuMab binds to the receptor binding domain of diphtheria toxin and blocks the toxin from binding to the putative receptor, heparin binding-epidermal growth factor like growth factor. The discovery of a specific and potent neutralizing antibody against diphtheria toxin holds promise as a potential human therapeutic and is being developed for human use

    The Role of Genomics in the Identification, Prediction, and Prevention of Biological Threats

    Get PDF
    In all likelihood, it is only a matter of time before our public health system will face a major biological threat, whether intentionally dispersed or originating from a known or newly emerging infectious disease. It is necessary not only to increase our reactive “biodefense,” but also to be proactive and increase our preparedness. To achieve this goal, it is essential that the scientific and public health communities fully embrace the genomic revolution, and that novel bioinformatic and computing tools necessary to make great strides in our understanding of these novel and emerging threats be developed. Genomics has graduated from a specialized field of science to a research tool that soon will be routine in research laboratories and clinical settings. Because the technology is becoming more affordable, genomics can and should be used proactively to build our preparedness and responsiveness to biological threats. All pieces, including major continued funding, advances in next-generation sequencing technologies, bioinformatics infrastructures, and open access to data and metadata, are being set in place for genomics to play a central role in our public health system
    • …
    corecore