6 research outputs found

    Bianchi {VI}0_{0} in Scalar and Scalar-Tensor Cosmologies

    Full text link
    We study several cosmological models with Bianchi \textrm{VI}0_{0} symmetries under the self-similar approach. In order to study how the \textquotedblleft constants\textquotedblright\ GG and Λ\Lambda may vary, we propose three scenarios where such constants are considered as time functions. The first model is a perfect fluid. We find that the behavior of GG and Λ\Lambda are related. If GG behaves as a growing time function then Λ\Lambda is a positive decreasing time function but if GG is decreasing then Λ\Lambda is negative. For this model we have found a new solution. The second model is a scalar field, where in a phenomenological way, we consider a modification of the Klein-Gordon equation in order to take into account the variation of GG. Our third scenario is a scalar-tensor model. We find three solutions for this models where GG is growing, constant or decreasing and Λ\Lambda is a positive decreasing function or vanishes. We put special emphasis on calculating the curvature invariants in order to see if the solutions isotropize.Comment: Typos corrected. References added, minor corrections. arXiv admin note: text overlap with arXiv:0905.247

    Generalized Self-similar Scalar-Tensor Theories

    Full text link
    We study through symmetry principles the form of the functions in the generalizated scalar-tensor theories under the self-similar hypothesis. The results obtained are absolutely general and valid for all the Bianchi models and the flat FRW one. We study the concrete example of the Kantowsky-Sach model finding some exact self-similar solutions.Comment: 21 pages. Typos corrected. References added, minor correction

    Holographic dark energy with time depend gravitational constant in the non-flat Horˇ\check{r}ava-Lifshitz cosmology

    Full text link
    We study the holographic dark energy on the subject of Horˇ\check{r}ava-Lifshitz gravity with a time dependent gravitational constant (G(t)), in the non-flat space-time. We obtain the differential equation that specify the evolution of the dark energy density parameter based on varying gravitational constant. we find out a relation for the state parameter of the dark energy equation to low redshifts which containing varying GG correction.Comment: 11 page

    Holographic Dark Energy in Braneworld Models with Moving Branes and the w=-1 Crossing

    Full text link
    We apply the bulk holographic dark energy in general 5D two-brane models. We extract the Friedmann equation on the physical brane and we show that in the general moving-brane case the effective 4D holographic dark energy behaves as a quintom for a large parameter-space area of a simple solution subclass. We find that wΛw_\Lambda was larger than -1 in the past while its present value is wΛ01.05w_{\Lambda_0}\approx-1.05, and the phantom bound wΛ=1w_\Lambda=-1 was crossed at zp0.41z_{p}\approx0.41, a result in agreement with observations. Such a behavior arises naturally, without the inclusion of special fields or potential terms, but a fine-tuning between the 4D Planck mass and the brane tension has to be imposed.Comment: 15 pages, 2 figures, version published in JCA

    Variable G

    No full text
    corecore