321 research outputs found

    Human Milk's Hidden Gift: Implications of the Milk Microbiome for Preterm Infants' Health

    Get PDF
    Breastfeeding is considered the gold standard for infants' nutrition, as mother's own milk (MOM) provides nutritional and bioactive factors functional to optimal development. Early life microbiome is one of the main contributors to short and long-term infant health status, with the gut microbiota (GM) being the most studied ecosystem. Some human milk (HM) bioactive factors, such as HM prebiotic carbohydrates that select for beneficial bacteria, and the specific human milk microbiota (HMM) are emerging as early mediators in the relationship between the development of GM in early life and clinical outcomes. The beneficial role of HM becomes even more crucial for preterm infants, who are exposed to significant risks of severe infection in early life as well as to adverse short and long-term outcomes. When MOM is unavailable or insufficient, donor human milk (DHM) constitutes the optimal nutritional choice. However, little is known about the specific effect of DHM on preterm GM and its potential functional implication on HMM. The purpose of this narrative review is to summarize recent findings on HMM origin and composition and discuss the role of HMM on infant health and development, with a specific focus on preterm infants

    Impact of patent ductus arteriosus on non-invasive assessments of lung fluids in very preterm infants during the transitional period

    Get PDF
    This prospective observational study aimed to evaluate whether lung fluids, assessed by lung ultrasonography and transthoracic electrical bioimpedance (TEB), may be influenced by the presence of a haemodynamically significant patent ductus arteriosus (hsPDA) in very preterm infants during the transitional period. Infants < 32 weeks of gestational age (GA) admitted to the neonatal intensive care units of IRCCS AOU Bologna and Niguarda Metropolitan Hospital of Milan (Italy) underwent a daily assessment of a lung ultrasound score (LUS) and of a TEB-derived index of thoracic fluid contents (TFC) during the first 72 h after birth. Echocardiographic scans were simultaneously performed to evaluate the concomitant ductal status (hsPDA vs. restrictive or closed duct). The correlation between LUS, TFC, and the ductal status was tested using generalized estimating equations. Forty-six infants (median GA: 29 [interquartile range, IQR: 27-31] weeks; median birth weight: 1099 [IQR: 880-1406] g) were included. At each daily evaluation, the presence of a hsPDA was associated with significantly higher LUS and TFC compared with a restrictive or closed ductus (p < 0.01 for all comparisons). These results were confirmed significant even after adjustment for GA and for the ongoing modality of respiratory support.Conclusion: Even during the first 72 h of life, the presence of a hsPDA determines a significant increase in pulmonary fluids which can be non-invasively detected and monitored over time using lung ultrasonography and TEB

    Defined \u3b1-synuclein prion-like molecular assemblies spreading in cell culture

    Get PDF
    BACKGROUND: \u3b1-Synuclein (\u3b1-syn) plays a central role in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders that includes Parkinson disease, dementia with Lewy bodies and multiple system atrophy. Several findings from cell culture and mouse experiments suggest intercellular \u3b1-syn transfer. RESULTS: Through a methodology used to obtain synthetic mammalian prions, we tested whether recombinant human \u3b1-syn amyloids can promote prion-like accumulation in neuronal cell lines in vitro. A single exposure to amyloid fibrils of human \u3b1-syn was sufficient to induce aggregation of endogenous \u3b1-syn in human neuroblastoma SH-SY5Y cells. Remarkably, endogenous wild-type \u3b1-syn was sufficient for the formation of these aggregates, and overexpression of the protein was not required. CONCLUSIONS: Our results provide compelling evidence that endogenous \u3b1-syn can accumulate in cell culture after a single exposure to exogenous \u3b1-syn short amyloid fibrils. Importantly, using \u3b1-syn short amyloid fibrils as seed, endogenous \u3b1-syn aggregates and accumulates over several passages in cell culture, providing an excellent tool for potential therapeutic screening of pathogenic \u3b1-syn aggregates

    Microbial community dynamics in mother's milk and infant's mouth and gut in moderately preterm infants

    Get PDF
    Mother's own milk represents the optimal source for preterm infant nutrition, as it promotes immune defenses and gastrointestinal function, protects against necrotizing enterocolitis, improves long-term clinical outcome and is hypothesized to drive gut microbiota assembly. Preterm infants at birth usually do not receive their mother's milk directly from the breast, because active suckling and coordination between suckling, swallowing and breathing do not develop until 32-34 weeks gestational age, but actual breastfeeding is usually possible as they grow older. Here, we enrolled moderately preterm infants (gestational age 32-34 weeks) to longitudinally characterize mothers' milk and infants' gut and oral microbiomes, up to more than 200 days after birth, through 16S rRNA sequencing. This peculiar population offers the chance to disentangle the differential contribution of human milk feeding per se vs. actual breastfeeding in the development of infant microbiomes, that have both been acknowledged as crucial contributors to short and long-term infant health status. In this cohort, the milk microbiome composition seemed to change following the infant's latching to the mother's breast, shifting toward a more diverse microbial community dominated by typical oral microbes, i.e., Streptococcus and Rothia. Even if all infants in the present study were fed human milk, features typical of healthy, full term, exclusively breastfed infants, i.e., high percentages of Bifidobacterium and low abundances of Pseudomonas in fecal and oral samples, respectively, were detected in samples taken after actual breastfeeding started. These findings underline the importance of encouraging not only human milk feeding, but also an early start of actual breastfeeding in preterm infants, since the infant's latching to the mother's breast might constitute an independent factor helping the health-promoting assembly of the infant gut microbiome

    Diagnostic challenges of an incidental finding: case report of definitely-congenital glioblastoma multiforme in a very preterm infant

    Get PDF
    Background: Congenital brain tumors are extremely rare in the neonatal population, and often associated with a poor prognosis. The diagnostic suspicion is often aroused at antenatal scans or postnatally, if clinical signs and symptoms of increased intracranial pressure become evident. We present a case of definitely congenital glioblastoma multiforme incidentally diagnosed in a preterm infant, aiming to raise clinical awareness on this condition and to highlight the challenges of the related diagnostic work-up. Case presentation: This female infant was born at 31 weeks’ gestation after an uneventful pregnancy. No abnormalities were detected at antenatal ultrasound scans and genetic tests. Head circumference at birth was on the 25th centile. A routine brain ultrasound scan performed on day 1 revealed a large, inhomogeneous lesion in the right cerebral hemisphere, with contralateral midline shift, which was confirmed by brain magnetic resonance imaging (MRI). Eye fundus and routine blood exams, including platelets count, coagulation screening and C-reactive protein, were normal. Given the high risk of complications, surgical biopsy of the lesion was temporarily hold and a daily sonographic follow-up was undertaken. Although head circumference growth was steady on the 25th centile, progressive changes of the lesion were detected by cranial ultrasound. The repeat MRI scans showed a significant enlargement of the mass, with contralateral midline shift and signs of intralesional and intraventricular bleeding. In view of this worsening, surgical resection was performed. The histological examination of the lesion biopsy documented a GFAP+ highly cellular neoplasm, with no mutation on SMARCB1 gene. At the molecular analysis, mutations on IDH and H3F3A genes were absent, whereas MGMT promoter was unmethylated. The diagnosis was grade IV glioblastoma IDH wild-type. Conclusions: Congenital glioblastoma multiforme is an extremely rare but highly aggressive neoplasm. Since intralesional biopsy is not often feasible in affected neonates, knowledge of the associated clinical and neuroradiological features is particularly important, as they can also add useful information on the neoplasm behavior. Specimens from open surgical resection allow to perform a definite histological analysis and an extended molecular characterization, with relevant prognostic implications

    A Proof of Concept of the Role of TDM-Based Clinical Pharmacological Advices in Optimizing Antimicrobial Therapy on Real-Time in Different Paediatric Settings

    Get PDF
    Introduction: Antimicrobial treatment is quite common among hospitalized children. The dynamic age-associated physiological variations coupled with the pathophysiological alterations caused by underlying illness and potential drug-drug interactions makes the implementation of appropriate antimicrobial dosing extremely challenging among paediatrics. Therapeutic drug monitoring (TDM) may represent a valuable tool for assisting clinicians in optimizing antimicrobial exposure. Clinical pharmacological advice (CPA) is an approach based on the correct interpretation of the TDM result by the MD Clinical Pharmacologist in relation to specific underlying conditions, namely the antimicrobial susceptibility of the clinical isolate, the site of infection, the pathophysiological characteristics of the patient and/or the drug-drug interactions of cotreatments. The aim of this study was to assess the role of TDM-based CPAs in providing useful recommendations for the real-time personalization of antimicrobial dosing regimens in various paediatric settings. Materials and methods: Paediatric patients who were admitted to different settings of the IRCCS Azienda Ospedaliero-Universitaria of Bologna, Italy (paediatric intensive care unit [ICU], paediatric onco-haematology, neonatology, and emergency paediatric ward), between January 2021 and June 2021 and who received TDM-based CPAs on real-time for personalization of antimicrobial therapy were retrospectively assessed. Demographic and clinical features, CPAs delivered in relation to different settings and antimicrobials, and type of dosing adjustments were extracted. Two indicators of performance were identified. The number of dosing adjustments provided over the total number of delivered CPAs. The turnaround time (TAT) of CPAs according to a predefined scale (optimal, <12 h; quasi-optimal, between 12–24 h; acceptable, between 24–48 h; suboptimal, >48 h). Results: Overall, 247 CPAs were delivered to 53 paediatric patients (mean 4.7 ± 3.7 CPAs/patient). Most were delivered to onco-haematological patients (39.6%) and to ICU patients (35.8%), and concerned mainly isavuconazole (19.0%) and voriconazole (17.8%). Overall, CPAs suggested dosing adjustments in 37.7% of cases (24.3% increases and 13.4% decreases). Median TAT was 7.5 h (IQR 6.1–8.8 h). Overall, CPAs TAT was optimal in 91.5% of cases, and suboptimal in only 0.8% of cases. Discussion: Our study provides a proof of concept of the helpful role that TDM-based real-time CPAs may have in optimizing antimicrobial exposure in different challenging paediatric scenarios

    Neurodevelopmental outcomes of very preterm infants born following early foetal growth restriction with absent end-diastolic umbilical flow

    Get PDF
    This study aims to assess the impact of time of onset and features of early foetal growth restriction (FGR) with absent end-diastolic flow (AEDF) on pregnancy outcomes and on preterm infants' clinical and neurodevelopmental outcomes up to 2 years corrected age. This is a retrospective, cohort study led at a level IV Obstetric and Neonatal Unit in Bologna, Italy. Pregnant women were eligible if having singleton pregnancies, with no major foetal anomaly detected, and diagnosed with early FGR + AEDF (defined as FGR + AEDF detected before 32 weeks gestation). Early FGR + AEDF was further classified according to time of onset and specific features into very early and persistent (VEP, FGR + AEDF first detected at 20-24 weeks gestation and persistent at the following scans), very early but transient (VET, FGR + AEDF detected at 20-24 weeks gestation and progressively improving at the following scans) and later (LA, FGR + AEDF detected between 25 and 32 weeks gestation). Pregnancy and neonatal outcomes and infant follow-up data were collected and compared among groups. Neurodevelopment was assessed using the revised Griffiths Mental Developmental Scales (GMDS-R) 0-2 years. A regression analysis was performed to identify early predictors of preterm infants' neurodevelopmental impairment. Fifty-two pregnant women with an antenatal diagnosis of early FGR + AEDF were included in the study (16 VEP, 14 VET, 22 LA). Four intrauterine foetal deaths occurred, all in the VEP group (p = 0.010). Compared to LA infants, VEP infants were born with lower gestational age and lower birth weight, had lower arterial cord blood pH and were at higher risk for intraventricular haemorrhage and periventricular leukomalacia (p < 0.05 for all comparisons). At 12 months, VEP infants had worse GMDS-R scores, both in the general quotient (mean [SD] 91.8 [12.4] vs 104.6 [8.7] in LA) and in the performance domain (mean [SD] 93.3 [15.4] vs 108.8 [8.8] in LA). This latter difference persisted at 24 months (mean [SD] 68.3 [17.0] vs 92.9 [17.7] in LA). In multivariate analysis, at 12 months corrected age, PVL was found to be an independent predictor of impaired general quotient, while the features and timing of antenatal Doppler alterations predicted worse scores in the performance domain.Conclusion: Timing of onset and features of early FGR + AEDF might impact differently on neonatal clinical and neurodevelopmental outcomes. Shared awareness of the importance of FGR + AEDF features between obstetricians and neonatologists may offer valuable tools for antenatal counselling and for tailoring pregnancy management and neonatal follow-up in light of specific antenatal and neonatal risk factors

    Processing of Sr2+ Containing Poly L-Lactic Acid-Based Hybrid Composites for Additive Manufacturing of Bone Scaffolds

    Get PDF
    Biodegradable composite materials represent one of the major areas of investigation for bone tissue engineering due to their tuneable compositional and mechanical properties, which can potentially mimic those of bone and potentially avoid the removal of implants, mitigating the risks for the patient and reducing the overall clinical costs. In addition, the introduction of additive manufacturing technologies enables a strict control over the final morphological features of the scaffolds. In this scenario, the optimisation of 3D printable resorbable composites, made of biocompatible polymers and osteoinductive inorganic phases, offers the potential to produce a chemically and structurally biomimetic implant, which will resorb over time. The present work focuses on the development and process optimisation of two hybrid composite filaments, to be used as feedstock for the fused filament fabrication 3D printing process. A Poly L-lactic acid matrix was blended with either rod-like nano-hydroxyapatite (nano-HA) or nanoparticles of mesoporous bioactive glasses, both partially substituted with strontium (Sr2+), due to the well-known pro-osteogenic effect of this ion. Both inorganic phases were incorporated into Poly L-lactic acid using an innovative combination of processes, obtaining a homogeneous distribution throughout the polymer whilst preserving their ability to release Sr2+. The filament mechanical properties were not hindered after the incorporation of the inorganic phases, resulting in tensile strengths and moduli within the range of cancellous bone, 50 ± 10 MPa and 3 ± 1 GPa. Finally, the rheological characterization of the hybrid composites indicated a shear thinning behaviour, ideal for the processing with fused filament fabrication, proving the potential of these materials to be processed into 3D structures aiming bone regeneration

    New Eco-gas mixtures for the Extreme Energy Events MRPCs: results and plans

    Full text link
    The Extreme Energy Events observatory is an extended muon telescope array, covering more than 10 degrees both in latitude and longitude. Its 59 muon telescopes are equipped with tracking detectors based on Multigap Resistive Plate Chamber technology with time resolution of the order of a few hundred picoseconds. The recent restrictions on greenhouse gases demand studies for new gas mixtures in compliance with the relative requirements. Tetrafluoropropene is one of the candidates for tetrafluoroethane substitution, since it is characterized by a Global Warming Power around 300 times lower than the gas mixtures used up to now. Several mixtures have been tested, measuring efficiency curves, charge distributions, streamer fractions and time resolutions. Results are presented for the whole set of mixtures and operating conditions, %. A set of tests on a real EEE telescope, with cosmic muons, are being performed at the CERN-01 EEE telescope. The tests are focusing on identifying a mixture with good performance at the low rates typical of an EEE telescope.Comment: 8 pages, 6 figures, proceedings for the "XIV Workshop on Resistive Plate Chambers and Related Detectors" (19-23 February 2018), Puerto Vallarta, Jalisco State, Mexic
    • …
    corecore