812 research outputs found
Geometric phase for an accelerated two-level atom and the Unruh effect
We study, in the framework of open quantum systems, the geometric phase
acquired by a uniformly accelerated two-level atom undergoing nonunitary
evolution due to its coupling to a bath of fluctuating vacuum electromagnetic
fields in the multipolar scheme. We find that the phase variation due to the
acceleration can be in principle observed via atomic interferometry between the
accelerated atom and the inertial one, thus providing an evidence of the Unruh
effect.Comment: 12 pages, no figure
Non-local quantum correlations and detection processes in QFT
Quantum detection processes in QFT must play a key role in the description of
quantum field correlations, such as the appearance of entanglement, and of
causal effects. We consider the detection in the case of a simple QFT model
with a suitable interaction to exact treatment, consisting of a quantum scalar
field coupled linearly to a classical scalar source. We then evaluate the
response function to the field quanta of two-level point-like quantum model
detectors, and analyze the effects of the approximation adopted in standard
detection theory. We show that the use of the RWA, that characterizes the
Glauber detection model, leads in the detector response to non-local terms
corresponding to an instantaneously spreading of source effects over the whole
space. Other detector models, obtained with non-standard or the no-application
of RWA, give instead local responses to field quanta, apart from source
independent vacuum contribution linked to preexisting correlations of
zero-point field.Comment: 23 page
Universality of Schmidt decomposition and particle identity
Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, its formulation for identical particles remains controversial, jeopardizing its application to analyze general many-body quantum systems. Here we prove, using a newly developed approach, a universal Schmidt decomposition which allows faithful quantification of the physical entanglement due to the identity of particles. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in separated places. For the case of two qutrits in the same place, we show that their entanglement behavior, whose physical interpretation is given, differs from that obtained before by different methods. Our results are generalizable to multiparticle systems and open the way for further developments in quantum information processing exploiting particle identity as a resource
Moving Atom-Field Interaction: Correction to Casimir-Polder Effect from Coherent Back-action
The Casimir-Polder force is an attractive force between a polarizable atom
and a conducting or dielectric boundary. Its original computation was in terms
of the Lamb shift of the atomic ground state in an electromagnetic field (EMF)
modified by boundary conditions along the wall and assuming a stationary atom.
We calculate the corrections to this force due to a moving atom, demanding
maximal preservation of entanglement generated by the moving atom-conducting
wall system. We do this by using non-perturbative path integral techniques
which allow for coherent back-action and thus can treat non-Markovian
processes. We recompute the atom-wall force for a conducting boundary by
allowing the bare atom-EMF ground state to evolve (or self-dress) into the
interacting ground state. We find a clear distinction between the cases of
stationary and adiabatic motions. Our result for the retardation correction for
adiabatic motion is up to twice as much as that computed for stationary atoms.
We give physical interpretations of both the stationary and adiabatic atom-wall
forces in terms of alteration of the virtual photon cloud surrounding the atom
by the wall and the Doppler effect.Comment: 16 pages, 2 figures, clarified discussions; to appear in Phys. Rev.
Field fluctuations near a conducting plate and Casimir-Polder forces in the presence of boundary conditions
We consider vacuum fluctuations of the quantum electromagnetic field in the
presence of an infinite and perfectly conducting plate. We evaluate how the
change of vacuum fluctuations due to the plate modifies the Casimir-Polder
potential between two atoms placed near the plate. We use two different methods
to evaluate the Casimir-Polder potential in the presence of the plate. They
also give new insights on the role of boundary conditions in the Casimir-Polder
interatomic potential, as well as indications for possible generalizations to
more complicated boundary conditions.Comment: 10 page
Entanglement dynamics of two independent qubits in environments with and without memory
A procedure to obtain the dynamics of independent qudits (-level
systems) each interacting with its own reservoir, for any arbitrary initial
state, is presented. This is then applied to study the dynamics of the
entanglement of two qubits, initially in an extended Werner-like mixed state
with each of them in a zero temperature non-Markovian environment. The
dependence of the entanglement dynamics on the purity and degree of
entanglement of the initial states and on the amount of non-Markovianity is
also given. This extends the previous work about non-Markovian effects on the
two-qubit entanglement dynamics for initial Bell-like states [B. Bellomo
\textit{et al.}, Phys. Rev. Lett. \textbf{99}, 160502 (2007)]. The effect of
temperature on the two-qubit entanglement dynamics in a Markovian environment
is finally obtained.Comment: 10 pages, 6 figure
Utilization of nitrate abolishes the "Custers effect" in Dekkera bruxellensis and determines a different pattern of fermentation products
Nitrate is one of the most abundant nitrogen sources in nature. Several yeast species have been shown to be able to assimilate nitrate and nitrite, but the metabolic pathway has been studied in very few of them. Dekkera bruxellensis can use nitrate as sole nitrogen source and this metabolic characteristic can render D. bruxellensis able to overcome S. cerevisiae populations in industrial bioethanol fermentations. In order to better characterize how nitrate utilization affects carbon metabolism and the yields of the fermentation products, we investigated this trait in defined media under well-controlled aerobic and anaerobic conditions. Our experiments showed that in D. bruxellensis, utilization of nitrate determines a different pattern of fermentation products. Acetic acid, instead of ethanol, became in fact the main product of glucose metabolism under aerobic conditions. We have also demonstrated that under anaerobic conditions, nitrate assimilation abolishes the "Custers effect", in this way improving its fermentative metabolism. This can offer a new strategy, besides aeration, to sustain growth and ethanol production for the employment of this yeast in industrial processes
Entanglement Trapping in Structured Environments
The entanglement dynamics of two independent qubits each embedded in a
structured environment under conditions of inhibition of spontaneous emission
is analyzed, showing entanglement trapping. We demonstrate that entanglement
trapping can be used efficiently to prevent entanglement sudden death. For the
case of realistic photonic band-gap materials, we show that high values of
entanglement trapping can be achieved. This result is of both fundamental and
applicative interest since it provides a physical situation where the
entanglement can be preserved and manipulated, e.g. by Stark-shifting the qubit
transition frequency outside and inside the gap.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. on Friday 16 May
200
Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions
We evaluate the Casimir-Polder potential between two atoms in the presence of
an infinite perfectly conducting plate and at nonzero temperature. In order to
calculate the potential, we use a method based on equal-time spatial
correlations of the electric field, already used to evaluate the effect of
boundary conditions on interatomic potentials. This method gives also a
transparent physical picture of the role of a finite temperature and boundary
conditions on the Casimir-Polder potential. We obtain an analytical expression
of the potential both in the near and far zones, and consider several limiting
cases of interest, according to the values of the parameters involved, such as
atom-atom distance, atoms-wall distance and temperature.Comment: 11 page
Entanglement Dynamics of Two Independent Cavity-Embedded Quantum Dots
We investigate the dynamical behavior of entanglement in a system made by two
solid-state emitters, as two quantum dots, embedded in two separated
micro-cavities. In these solid-state systems, in addition to the coupling with
the cavity mode, the emitter is coupled to a continuum of leaky modes providing
additional losses and it is also subject to a phonon-induced pure dephasing
mechanism. We model this physical configuration as a multipartite system
composed by two independent parts each containing a qubit embedded in a
single-mode cavity, exposed to cavity losses, spontaneous emission and pure
dephasing. We study the time evolution of entanglement of this multipartite
open system finally applying this theoretical framework to the case of
currently available solid-state quantum dots in micro-cavities.Comment: 10 pages, 4 figures, to appear in Topical Issue of Physica Scripta on
proceedings of CEWQO 201
- …