1,854 research outputs found

    Motion of Isolated bodies

    Get PDF
    It is shown that sufficiently smooth initial data for the Einstein-dust or the Einstein-Maxwell-dust equations with non-negative density of compact support develop into solutions representing isolated bodies in the sense that the matter field has spatially compact support and is embedded in an exterior vacuum solution

    The Cauchy problem for metric-affine f(R)-gravity in presence of a Klein-Gordon scalar field

    Full text link
    We study the initial value formulation of metric-affine f(R)-gravity in presence of a Klein-Gordon scalar field acting as source of the field equations. Sufficient conditions for the well-posedness of the Cauchy problem are formulated. This result completes the analysis of the same problem already considered for other sources.Comment: 6 page

    Geometrical Hyperbolic Systems for General Relativity and Gauge Theories

    Full text link
    The evolution equations of Einstein's theory and of Maxwell's theory---the latter used as a simple model to illustrate the former--- are written in gauge covariant first order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom [the spatial shift vector βi(t,xj)\beta^{i}(t,x^{j}) and the spatial scalar potential ϕ(t,xj)\phi(t,x^{j}), respectively] are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of (t,xj)(t,x^{j}) from subsidiary equations that are not part of the evolution equations. Propagation of certain (``radiative'') dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by (1)(1) taking a further time derivative of the equation of motion of the canonical momentum, and (2)(2) adding a covariant spatial derivative of the momentum constraints of general relativity (Lagrange multiplier βi\beta^{i}) or of the Gauss's law constraint of electromagnetism (Lagrange multiplier ϕ\phi). General relativity also requires a harmonic time slicing condition or a specific generalization of it that brings in the Hamiltonian constraint when we pass to first order symmetric form. The dynamically propagating gravity fields straightforwardly determine the ``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure

    Easy plane baby skyrmions

    Full text link
    The baby Skyrme model is studied with a novel choice of potential, V=1/2Ď•32V=1/2 \phi_3^2. This "easy plane" potential vanishes at the equator of the target two-sphere. Hence, in contrast to previously studied cases, the boundary value of the field breaks the residual SO(2) internal symmetry of the model. Consequently, even the unit charge skyrmion has only discrete symmetry and consists of a bound state of two half lumps. A model of long-range inter-skyrmion forces is developed wherein a unit skyrmion is pictured as a single scalar dipole inducing a massless scalar field tangential to the vacuum manifold. This model has the interesting feature that the two-skyrmion interaction energy depends only on the average orientation of the dipoles relative to the line joining them. Its qualitative predictions are confirmed by numerical simulations. Global energy minimizers of charges B=1,...,14,18,32 are found numerically. Up to charge B=6, the minimizers have 2B half lumps positioned at the vertices of a regular 2B-gon. For charges B >= 7, rectangular or distorted rectangular arrays of 2B half lumps are preferred, as close to square as possible.Comment: v3: replaced with journal version, one new reference, one deleted reference; 8 pages, 5 figures v2: fixed some typos and clarified the relationship with condensed matter systems 8 pages, 5 figure

    Constraints and evolution in cosmology

    Get PDF
    We review some old and new results about strict and non strict hyperbolic formulations of the Einstein equations.Comment: To appear in the proceedings of the first Aegean summer school in General Relativity, S. Cotsakis ed. Springer Lecture Notes in Physic

    Cosmological spacetimes not covered by a constant mean curvature slicing

    Get PDF
    We show that there exist maximal globally hyperbolic solutions of the Einstein-dust equations which admit a constant mean curvature Cauchy surface, but are not covered by a constant mean curvature foliation.Comment: 11 page

    Einstein and Yang-Mills theories in hyperbolic form without gauge-fixing

    Full text link
    The evolution of physical and gauge degrees of freedom in the Einstein and Yang-Mills theories are separated in a gauge-invariant manner. We show that the equations of motion of these theories can always be written in flux-conservative first-order symmetric hyperbolic form. This dynamical form is ideal for global analysis, analytic approximation methods such as gauge-invariant perturbation theory, and numerical solution.Comment: 12 pages, revtex3.0, no figure

    Slice Energy and Theories of Gravitation

    Full text link
    We review recent work on the use of the slice energy concept in generalized theories of gravitation. We focus on two special features in these theories, namely, the energy exchange between the matter component and the scalar field generated by the conformal transformation to the Einstein frame of such theories and the issue of the physical equivalence of different conformal frame representations. We show that all such conformally-related, generalized theories of gravitation allow for the slice energy to be invariably defined and its fundamental properties be insensitive to conformal transformations.Comment: 16 pages, In: Proceedings of the 11th Greek Relativity Meetin

    A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds

    Get PDF
    We establish new existence and non-existence results for positive solutions of the Einstein-scalar field Lichnerowicz equation on compact manifolds. This equation arises from the Hamiltonian constraint equation for the Einstein-scalar field system in general relativity. Our analysis introduces variational techniques, in the form of the mountain pass lemma, to the analysis of the Hamiltonian constraint equation, which has been previously studied by other methods.Comment: 15 page

    Hamiltonian Time Evolution for General Relativity

    Get PDF
    Hamiltonian time evolution in terms of an explicit parameter time is derived for general relativity, even when the constraints are not satisfied, from the Arnowitt-Deser-Misner-Teitelboim-Ashtekar action in which the slicing density α(x,t)\alpha(x,t) is freely specified while the lapse N=αg1/2N=\alpha g^{1/2} is not. The constraint ``algebra'' becomes a well-posed evolution system for the constraints; this system is the twice-contracted Bianchi identity when Rij=0R_{ij}=0. The Hamiltonian constraint is an initial value constraint which determines g1/2g^{1/2} and hence NN, given α\alpha.Comment: 4 pages, revtex, to appear in Phys. Rev. Let
    • …
    corecore