302 research outputs found

    Desynchronization in diluted neural networks

    Full text link
    The dynamical behaviour of a weakly diluted fully-inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochastic-like regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase-locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of ``stable chaos'', i.e. by observing that the stochastic-like behaviour is "limited" to a an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.Comment: 11 pages, 13 figures, submitted to Phys. Rev.

    Non-Fermi-liquid behavior in nearly ferromagnetic metallic SrIrO3 single crystals

    Full text link
    We report transport and thermodynamic properties of single-crystal SrIrO3 as a function of temperature T and applied magnetic field H. We find that SrIrO3 is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized by the following properties: (1) small ordered moment but no evidence for long-range order down to 1.7 K; (2) strongly enhanced magnetic susceptibility that diverges as T or T1/2 at low temperatures, depending on the applied field; (3) heat capacity C(T,H) ~ -Tlog T that is readily amplified by low applied fields; (4) a strikingly large Wilson ratio at T< 4K; and (5) a T3/2-dependence of electrical resistivity over the range 1.7 < T < 120 K. A phase diagram based on the data implies SrIrO3 is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point (T = 0 and H = 0.23 T)

    Interaction of Phonons and Dirac Fermions on the Surface of Bi2Se3: A Strong Kohn Anomaly

    Full text link
    We report the first measurements of phonon dispersion curves on the (001) surface of the strong three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent signature of the exotic metallic Dirac fermion quasi-particles, including a strong Kohn anomaly. The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a frequency maximum of 1.8 THz, and having a V-shaped minimum at approximately 2kF that defines the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions to this renormalization is derived in terms of a Coulomb-type perturbation model

    Physical Behaviour and Theoretical Understanding of Nanowires

    Get PDF

    Pressure-Induced Insulating State in Ba1-xRExIrO3 (RE = Gd, Eu) Single Crystals

    Full text link
    BaIrO3 is a novel insulator with coexistent weak ferromagnetism, charge and spin density wave. Dilute RE doping for Ba induces a metallic state, whereas application of modest pressure readily restores an insulating state characterized by a three-order-of-magnitude increase of resistivity. Since pressure generally increases orbital overlap and broadens energy bands, a pressure-induced insulating state is not commonplace. The profoundly dissimilar responses of the ground state to light doping and low hydrostatic pressures signal an unusual, delicate interplay between structural and electronic degrees of freedom in BaIrO3

    Orbitally-driven Behavior: Mott Transition, Quantum Oscillations and Colossal Magnetoresistance in Bilayered Ca3Ru2O7

    Full text link
    We report recent transport and thermodynamic experiments over a wide range of temperatures for the Mott-like system Ca3Ru2O7 at high magnetic fields, B, up to 30 T. This work reveals a rich and highly anisotropic phase diagram, where applying B along the a-, b-, and c-axis leads to vastly different behavior. A fully spin-polarized state via a first order metamagnetic transition is obtained for B||a, and colossal magnetoresistance is seen for B||b, and quantum oscillations in the resistivity are observed for B||c, respectively. The interplay of the lattice, orbital and spin degrees of freedom are believed to give rise to this strongly anisotropic behavior.Comment: 26 pages and 8 figure
    corecore