173 research outputs found

    The sensitivity to change of the cluster headache quality of life scale assessed before and after deep brain stimulation of the ventral tegmental area.

    Get PDF
    BACKGROUND: Cluster headache (CH) is a trigeminal autonomic cephalalgia (TAC) characterized by a highly disabling headache that negatively impacts quality of life and causes limitations in daily functioning as well as social functioning and family life. Since specific measures to assess the quality of life (QoL) in TACs are lacking, we recently developed and validated the cluster headache quality of life scale (CH-QoL). The sensitivity of CH-QoL to change after a medical intervention has not been evaluated yet. METHODS: This study aimed to test the sensitivity to change of the CH-QoL in CH. Specifically we aimed to (i) assess the sensitivity of CH-QoL to change before and following deep brain stimulation of the ventral tegmental area (VTA-DBS), (ii) evaluate the relationship of changes on CH-QoL with changes in other generic measures of quality of life, as well as indices of mood and pain. Ten consecutive CH patients completed the CH-QoL and underwent neuropsychological assessment before and after VTA-DBS. The patients were evaluated on headache frequency, severity, and load (HAL) as well as on tests of generic quality of life (Short Form-36 (SF-36)), mood (Beck Depression Inventory, Hospital Anxiety and Depression Rating Scale), and pain (McGill Pain Questionnaire, Headache Impact Test, Pain Behaviour Checklist). RESULTS: The CH-QoL total score was significantly reduced after compared to before VTA-DBS. Changes in the CH-QoL total score correlated significantly and negatively with changes in HAL, the SF-36, and positively and significantly with depression and the evaluative domain on the McGill Pain Questionnaire. CONCLUSIONS: Our findings demonstrate that changes after VTA-DBS in CH-QoL total scores are associated with the reduction of frequency, duration, and severity of headache attacks after surgery. Moreover, post VTA-DBS improvement in CH-QoL scores is associated with an amelioration in quality of life assessed with generic measures, a reduction of depressive symptoms, and evaluative pain experience after VTA-DBS. These results support the sensitivity to change of the CH-QoL and further demonstrate the validity and applicability of CH-QoL as a disease specific measure of quality of life for CH

    Ventral tegmental area deep brain stimulation for chronic cluster headache: Effects on cognition, mood, pain report behaviour and quality of life

    Get PDF
    BACKGROUND: Deep brain stimulation in the ventral tegmental area (VTA-DBS) has provided remarkable therapeutic benefits in decreasing headache frequency and severity in patients with medically refractory chronic cluster headache (CH). However, to date the effects of VTA-DBS on cognition, mood and quality of life have not been examined in detail. METHODS: The aim of the present study was to do so in a case series of 18 consecutive patients with cluster headache who underwent implantation of deep brain stimulation electrodes in the ventral tegmental area. The patients were evaluated preoperatively and after a mean of 14 months of VTA-DBS on tests of global cognition (Mini Mental State Examination), intelligence (Wechsler Abbreviated Scale of Intelligence), verbal memory (California Verbal Learning Test-II), executive function (Delis-Kaplan Executive Function System), and attention (Paced Auditory Serial Addition Test). Depression (Beck Depression Inventory and Hospital Anxiety and Depression Rating Scale-D), anxiety (Hospital Anxiety and Depression Rating Scale-A), apathy (Starkstein Apathy Scale), and hopelessness (Beck Hopelessness Scale) were also assessed. Subjective pain experience (McGill Pain Questionnaire), behaviour (Pain Behaviour Checklist) and quality of life (Short Form-36) were also evaluated at the same time points. RESULTS: VTA-DBS resulted in significant improvement of headache frequency (from a mean of five to two attacks daily, p < .001) and severity (from mean Verbal Rating Scale [VRS] of 10 to 7, p < .001) which was associated with significant reduction of anxiety (from mean HADS-A of 11.94 to 8.00, p < .001) and help-seeking behaviours (from mean PBC of 4.00 to 2.61, p < .001). VTA-DBS did not produce any significant change to any tests of cognitive function and any other outcome measures (BDI, HADS-D, SAS, BHS, McGill Pain Questionnaire, Short Form-36). CONCLUSION: We confirm the efficacy of VTA-DBS in the treatment of medically refractory chronic cluster headache. The reduction of headache frequency and severity was associated with a significant reduction of anxiety. Furthermore, the result suggests that VTA-DBS for chronic cluster headache improves pain-related help-seeking behaviours and does not produce any change in cognition

    Umbilical cord mesenchymal stem cells modulate dextran sulphate sodium induced acute colitis in immunodeficient mice.

    Get PDF
    Inflammatory bowel diseases (IBD) are complex multi-factorial diseases with increasing incidence worldwide but their treatment is far from satisfactory. Unconventional strategies have consequently been investigated, proposing the use of stem cells as an effective alternative approach to IBD. In the present study we examined the protective potential of exogenously administered human umbilical cord derived mesenchymal stem cells (UCMSCs) against Dextran Sulphate Sodium (DSS) induced acute colitis in immunodeficient NOD.CB17-Prkdc scid/J mice with particular attention to endoplasmic reticulum (ER) stress. METHODS: UCMSCs were injected in NOD.CB17-Prkdc scid/J via the tail vein at day 1 and 4 after DSS administration. To verify attenuation of DSS induced damage by UCMSCs, Disease Activity Index (DAI) and body weight changes was monitored daily. Moreover, colon length, histological changes, myeloperoxidase and catalase activities, metalloproteinase (MMP) 2 and 9 expression and endoplasmic reticulum (ER) stress related proteins were evaluated on day 7. RESULTS: UCMSCs administration to immunodeficient NOD.CB17-Prkdc scid/J mice after DSS damage significantly reduced DAI (1.45\u2009\ub1\u20090.16 vs 2.08\u2009\ub1\u20090.18, p\u20093-fold), which were significantly reduced in mice receiving UCMSCs. Moreover, positive modulation in ER stress related proteins was observed after UCMSC administration. CONCLUSIONS: Our results demonstrated that UCMSCs are able to prevent DSS-induced colitis in immunodeficient mice. Using these mice we demonstrated that our UCMSCs have a direct preventive effect other than the T-cell immunomodulatory properties which are already known. Moreover we demonstrated a key function of MMPs and ER stress in the establishment of colitis suggesting them to be potential therapeutic targets in IBD treatment

    Intuition: Myth or a Decision-making Tool?

    Get PDF
    Faced with today’s ill-structured business environment of fast-paced change and rising uncertainty, organizations have been searching for management tools that will perform satisfactorily under such ambiguous conditions. In the arena of managerial decision making, one of the approaches being assessed is the use of intuition. Based on our definition of intuition as a non-sequential information-processing mode, which comprises both cognitive and affective elements and results in direct knowing without any use of conscious reasoning, we develop a testable model of integrated analytical and intuitive decision making and propose ways to measure the use of intuition

    Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis

    Get PDF
    Although macrophages are widely recognized to have a profibrotic role in inflammation, we have used a highly tractable CCl(4)-induced model of reversible hepatic fibrosis to identify and characterize the macrophage phenotype responsible for tissue remodeling: the hitherto elusive restorative macrophage. This CD11B(hi) F4/80(int) Ly-6C(lo) macrophage subset was most abundant in livers during maximal fibrosis resolution and represented the principle matrix metalloproteinase (MMP) -expressing subset. Depletion of this population in CD11B promoter–diphtheria toxin receptor (CD11B-DTR) transgenic mice caused a failure of scar remodeling. Adoptive transfer and in situ labeling experiments showed that these restorative macrophages derive from recruited Ly-6C(hi) monocytes, a common origin with profibrotic Ly-6C(hi) macrophages, indicative of a phenotypic switch in vivo conferring proresolution properties. Microarray profiling of the Ly-6C(lo) subset, compared with Ly-6C(hi) macrophages, showed a phenotype outside the M1/M2 classification, with increased expression of MMPs, growth factors, and phagocytosis-related genes, including Mmp9, Mmp12, insulin-like growth factor 1 (Igf1), and Glycoprotein (transmembrane) nmb (Gpnmb). Confocal microscopy confirmed the postphagocytic nature of restorative macrophages. Furthermore, the restorative macrophage phenotype was recapitulated in vitro by the phagocytosis of cellular debris with associated activation of the ERK signaling cascade. Critically, induced phagocytic behavior in vivo, through administration of liposomes, increased restorative macrophage number and accelerated fibrosis resolution, offering a therapeutic strategy to this orphan pathological process

    Relationship between Exercise Capacity and Brain Size in Mammals

    Get PDF
    A great deal of experimental research supports strong associations between exercise, cognition, neurogenesis and neuroprotection in mammals. Much of this work has focused on neurogenesis in individual subjects in a limited number of species. However, no study to date has examined the relationship between exercise and neurobiology across a wide range of mammalian taxa. It is possible that exercise and neurobiology are related across evolutionary time. To test this hypothesis, this study examines the association between exercise and brain size across a wide range of mammals.Controlling for associations with body size, we examined the correlation between brain size and a proxy for exercise frequency and capacity, maximum metabolic rate (MMR; ml O(2) min(-1)). We collected brain sizes and MMRs from the literature and calculated residuals from the least-squares regression line describing the relationship between body mass and each variable of interest. We then analyzed the correlation between residual brain size and residual MMR both before and after controlling for phylogeny using phylogenetic independent contrasts. We found a significant positive correlation between maximum metabolic rate and brain size across a wide range of taxa.These results suggest a novel hypothesis that links brain size to the evolution of locomotor behaviors in a wide variety of mammalian species. In the end, we suggest that some portion of brain size in nonhuman mammals may have evolved in conjunction with increases in exercise capacity rather than solely in response to selection related to cognitive abilities
    • …
    corecore