19 research outputs found

    Pes cavus and hereditary neuropathies: when a relationship should be suspected

    Get PDF
    The hereditary peripheral neuropathies are a clinically and genetically heterogeneous group of diseases of the peripheral nervous system. Foot deformities, including the common pes cavus, but also hammer toes and twisting of the ankle, are frequently present in patients with hereditary peripheral neuropathy, and often represent one of the first signs of the disease. Pes cavus in hereditary peripheral neuropathies is caused by imbalance between the intrinsic muscles of the foot and the muscles of the leg. Accurate clinical evaluation in patients with pes cavus is necessary to exclude or confirm the presence of peripheral neuropathy. Hereditary peripheral neuropathies should be suspected in those cases with bilateral foot deformities, in the presence of family history for pes cavus and/or gait impairment, and in the presence of neurological symptoms or signs, such as distal muscle hypotrophy of limbs. Herein, we review the hereditary peripheral neuropathies in which pes cavus plays a key role as a “spy sign,” discussing the clinical and molecular features of these disorders to highlight the importance of pes cavus as a helpful clinical sign in these rare diseases

    Erythropoietin in amyotrophic lateral sclerosis: a multicentre, randomised, double blind, placebo controlled, phase III study

    Get PDF
    OBJECTIVE: To assess the efficacy of recombinant human erythropoietin (rhEPO) in amyotrophic lateral sclerosis (ALS). METHODS: Patients with probable laboratory-supported, probable or definite ALS were enrolled by 25 Italian centres and randomly assigned (1:1) to receive intravenous rhEPO 40,000 IU or placebo fortnightly as add-on treatment to riluzole 100 mg daily for 12 months. The primary composite outcome was survival, tracheotomy or >23 h non-invasive ventilation (NIV). Secondary outcomes were ALSFRS-R, slow vital capacity (sVC) and quality of life (ALSAQ-40) decline. Tolerability was evaluated analysing adverse events (AEs) causing withdrawal. The randomisation sequence was computer-generated by blocks, stratified by centre, disease severity (ALSFRS-R cut-off score of 33) and onset (spinal or bulbar). The main outcome analysis was performed in all randomised patients and by intention-to-treat for the entire population and patients stratified by severity and onset. The study is registered, EudraCT 2009-016066-91. RESULTS: We randomly assigned 208 patients, of whom 5 (1 rhEPO and 4 placebo) withdrew consent and 3 (placebo) became ineligible (retinal thrombosis, respiratory insufficiency, SOD1 mutation) before receiving treatment; 103 receiving rhEPO and 97 placebo were eligible for analysis. At 12 months, the annualised rate of death (rhEPO 0.11, 95% CI 0.06 to 0.20; placebo: 0.08, CI 0.04 to 0.17), tracheotomy or >23 h NIV (rhEPO 0.16, CI 0.10 to 0.27; placebo 0.18, CI 0.11 to 0.30) did not differ between groups, also after stratification by onset and ALSFRS-R at baseline. Withdrawal due to AE was 16.5% in rhEPO and 8.3% in placebo. No differences were found for secondary outcomes. CONCLUSIONS: RhEPO 40,000 IU fortnightly did not change the course of ALS

    Pes cavus and hereditary neuropathies: when a relationship should be suspected.

    No full text
    The hereditary peripheral neuropathies are a clinically and genetically heterogeneous group of diseases of the peripheral nervous system. Foot deformities, including the common pes cavus, but also hammer toes and twisting of the ankle, are frequently present in patients with hereditary peripheral neuropathy, and often represent one of the first signs of the disease. Pes cavus in hereditary peripheral neuropathies is caused by imbalance between the intrinsic muscles of the foot and the muscles of the leg. Accurate clinical evaluation in patients with pes cavus is necessary to exclude or confirm the presence of peripheral neuropathy. Hereditary peripheral neuropathies should be suspected in those cases with bilateral foot deformities, in the presence of family history for pes cavus and/or gait impairment, and in the presence of neurological symptoms or signs, such as distal muscle hypotrophy of limbs. Herein, we review the hereditary peripheral neuropathies in which pes cavus plays a key role as a "spy sign," discussing the clinical and molecular features of these disorders to highlight the importance of pes cavus as a helpful clinical sign in these rar

    Oxidative stress modulation in neurodegenerative diseases

    No full text
    The primary pathological feature of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis is the slow and progressive selective dysfunction and loss of neurons and axons in the central nervous system. Despite different triggering events, a common feature is the involvement of oxidative stress. Several evidences indicate that oxidative stress is critical for neurodegeneration. Here, we review the impact of oxidative stress involvement in neurodegenerative disorders, and discuss its contribution to neurons damage. We also discuss potential antioxidant therapies to modulate oxidative stress in this group of diseases. A better understanding of the imbalance between the production of reactive oxygen species and the ability of nervous system to remove them or repair the ensuing damage will be crucial for the development of new potential therapeutic strategies

    Strategies for clinical approach to neurodegeneration in Amyotrophic lateral sclerosis.

    No full text
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disorder of unknown aetiology that involves the loss of upper and lower motor neurons in the cerebral cortex, brainstem and spinal cord. Significant progress in understanding the cellular mechanisms of motor neuron degeneration in ALS has not been matched with the development of therapeutic strategies to prevent disease progression, and riluzole remains the only available therapy, with only marginal effects on disease survival. More recently alterations of mRNA processing in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations have provided important insights into the molecular networks implicated in the disease pathogenesis. Here we review some of the recent progress in promoting therapeutic strategies for neurodegeneration

    Nerve and muscle involvement in mitochondrial disorders: an electrophysiological study.

    No full text
    Involvement of the peripheral nervous system in mitochondrial disorders (MD) has been previously reported. However, the exact prevalence of peripheral neuropathy and/or myopathy in MD is still unclear. In order to evaluate the prevalence of neuropathy and myopathy in MD, we performed sensory and motor nerve conduction studies (NCS) and concentric needle electromyography (EMG) in 44 unselected MD patients. NCS were abnormal in 36.4% of cases, and were consistent with a sensori-motor axonal multineuropathy (multifocal neuropathy), mainly affecting the lower limbs. EMG evidence of myopathy was present in 54.5% of patients, again mainly affecting the lower limbs. Nerve and muscle involvement was frequently subclinical. Peripheral nerve and muscle involvement is common in MD patients. Our study supports the variability of the clinical expression of MD. Further studies are needed to better understand the molecular basis underlying the phenotypic variability among MD patients
    corecore