240 research outputs found

    4-(3-Eth­oxy-4-hydroxy­styr­yl)-1-methyl­pyridinium tosyl­ate monohydrate

    Get PDF
    In the title compound, C16H18NO2 +·C7H7O3S−·H2O, the dihedral angle between the pyridyl and benzene rings of the pyridinium cation is 0.2 (1)°. The benzene ring of the tosyl­ate anion makes a dihedral angle of 4.8 (2)° with the best mean plane of the pyridinium cation. The pyridinium cation and the tosyl­ate anion are hydrogen bonded to the water mol­ecule, and the crystal packing is further stabilized by inter­molecular C—H⋯O and π–π inter­actions [centroid–centroid separations of 3.648 (3) and 3.594 (2) Å

    Corrosion Inhibition Studies of Mild Steel in Acid Medium Using Musa Acuminata Fruit Peel Extract

    Get PDF
    Abstract: The inhibition effect of unripe fruit peel extract of Musa acuminata (Cultivar variety -Nendran) (MNP) on corrosion of mild steel in 1 N HCl has been investigated by weight loss and electrochemical impedance spectroscopy (EIS) with various concentrations of the extract. The effect of temperature on the corrosion inhibition of mild steel in the temperature range of 30 °C -80 °C was carried out. The results indicate that MNP extract act as an effective inhibitor in the acid environment and is of mixed type inhibitor having efficiency as high as 96% at 2% inhibitor concentration. The inhibition efficiency of MNP extract increases with the increase of concentration but decreases with the increase in temperature. The inhibitor achieves its inhibition by physical adsorption of nutrients of the peel extract on the surface of the mild steel. The experimental data revealed that the adsorption occurred according to the Langmuir and Temkin adsorption isotherm

    An electron paramagnetic resonance study of Pr_{0.6}Ca_{0.4}MnO_{3} across the charge ordering transition

    Full text link
    We report the first electron paramagnetic resonance studies of single crystals and powders of Pr_{0.6}Ca_{0.4}MnO_{3} in the 300-4.2 K range, covering the charge ordering transition at ~ 240 K and antiferromagnetic transition (T_N) at ~ 170 K. The asymmetry parameter for the Dysonian single crystal spectra shows anomalous increase at T_{co}. Below T_{co} the g-value increases continuously, suggesting a gradual strengthening of orbital ordering. The linewidth undergoes a sudden increase at T_{co} and continues to increase down to T_N. The intensity increases as the temperature is decreased till T_{co} due to the renormalization of magnetic susceptibility arising from the build up of ferromagnetic correlations. The value of the exchange constant, J, is estimated to be 154 K.Comment: Uses Revtex3.

    Cooling rate dependence of the antiferromagnetic domain structure of a single crystalline charge ordered manganite

    Full text link
    The low temperature phase of single crystals of Nd0.5_{0.5}Ca0.5_{0.5}MnO3_3 and Gd0.5_{0.5}Ca0.5_{0.5}MnO3_3 manganites is investigated by squid magnetometry. Nd0.5_{0.5}Ca0.5_{0.5}MnO3_3 undergoes a charge-ordering transition at TCOT_{CO}=245K, and a long range CE-type antiferromagnetic state is established at TNT_N=145K. The dc-magnetization shows a cooling rate dependence below TNT_N, associated with a weak spontaneous moment. The associated excess magnetization is related to uncompensated spins in the CE-type antiferromagnetic structure, and to the presence in this state of fully orbital ordered regions separated by orbital domain walls. The observed cooling rate dependence is interpreted to be a consequence of the rearrangement of the orbital domain state induced by the large structural changes occurring upon cooling.Comment: REVTeX4; 7 pages, 4 figures. Revised 2001/12/0

    Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3-NiFe2O4 composite films

    Get PDF
    We fabricated Pb(Zr0.52Ti0.48)O3-NiFe2O4 composite films consisting of randomly dispersed NiFe2O4 nanoparticles in the Pb(Zr0.52Ti0.48)O3 matrix. The structural analysis revealed that the crystal axes of the NiFe2O4 nanoparticles are aligned with those of the ferroelectric matrix. The composite has good ferroelectric and magnetic properties. We measured the transverse and longitudinal components of the magnetoelectric voltage coefficient, which supports the postulate that the magnetoelectric effect comes from direct stress coupling between magnetostrictive NiFe2O4 and piezoelectric Pb(Zr0.52Ti0.48)O3 grains.Comment: 11 pages, 4 figure

    Identifying the seeding signature in cloud particles from hydrometeor residuals

    Get PDF
    Cloud seeding experiments for modifying clouds and precipitation have been underway for nearly a century; yet practically all the attempts to link precipitation enhancement or suppression to the presence of seeding materials within clouds remain elusive. In 2019, the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) investigated residuals of cloud hydrometeors in seeded and non-seeded clouds with an airborne mini aerosol mass spectrometer (mAMS). The mAMS was utilized in conjunction with a counterflow virtual impactor (CVI) inlet with a cutoff diameter size of approximately 7 ”m. The evaporated cloud droplets from the CVI inlet as cloud residuals were evaluated through the mAMS. The chlorine (Cl) associated with hygroscopic materials, i.e. calcium chloride (CaCl2) and potassium (K), which serve as the oxidizing agents in the flares, is found in relatively higher concentrations in the seeded clouds compared to the non-seeded clouds. In convective clouds, Cl and K as cloud residuals were found even at a vertical distance of 2.25 km from the cloud base. Major findings from the seeding impact are an increase in the number concentration of small (&lt; 20 ”m) droplets and an indication of raindrop formation at 2.25 km above the cloud base. It is demonstrated that the seed particle signature can be traced inside clouds along with the microphysical impacts.</p

    Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters

    Get PDF
    Three-dimensional lanthanide-organic frameworks formulated as (CH3)2NH2[Ln(pydc)2] · 1/2H2O [Ln3+ ) Eu3+ (1a) or Er3+ (1b); pydc2- corresponds to the diprotonated residue of 2,5-pyridinedicarboxylic acid (H2pydc)], [Er4(OH)4(pydc)4(H2O)3] ·H2O (2), and [PrIII 2PrIV 1.25O(OH)3(pydc)3] (3) have been isolated from typical solvothermal (1a and 1b in N,N-dimethylformamide - DMF) and hydrothermal (2 and 3) syntheses. Materials were characterized in the solid state using single-crystal X-ray diffraction, thermogravimetric analysis, vibrational spectroscopy (FT-IR and FT-Raman), electron microscopy, and CHN elemental analysis. While synthesis in DMF promotes the formation of centrosymmetric dimeric units, which act as building blocks in the construction of anionic ∞ 3{[Ln(pydc)2]-} frameworks having the channels filled by the charge-balancing (CH3)2NH2 + cations generated in situ by the solvolysis of DMF, the use of water as the solvent medium promotes clustering of the lanthanide centers: structures of 2 and 3 contain instead tetrameric [Er4(ÎŒ3-OH)4]8+ and hexameric |Pr6(ÎŒ3-O)2(ÎŒ3-OH)6| clusters which act as the building blocks of the networks, and are bridged by the H2-xpydcx- residues. It is demonstrated that this modular approach is reflected in the topological nature of the materials inducing 4-, 8-, and 14-connected uninodal networks (the nodes being the centers of gravity of the clusters) with topologies identical to those of diamond (family 1), and framework types bct (for 2) and bcu-x (for 3), respectively. The thermogravimetric studies of compound 3 further reveal a significant weight increase between ambient temperature and 450 °C with this being correlated with the uptake of oxygen from the surrounding environment by the praseodymium oxide inorganic core
    • 

    corecore