673 research outputs found
Perturbative approach to the structure of rapidly rotating neutron stars
We construct models of rotating stars using the perturbative approach
introduced by J. Hartle in 1967, and a set of equations of state proposed to
model hadronic interactions in the inner core of neutron stars. We integrate
the equations of stellar structure to third order in the angular velocity and
show, comparing our results to those obtained with fully non linear codes, to
what extent third order corrections are needed to accurately reproduce the
moment of inertia of a star which rotates at rates comparable to that of the
fastest isolated pulsars.Comment: 17 pages, 5 figures, minor changes to match version accepted by Phys.
Rev.
Modeling the iron oxides and oxyhydroxides for the prediction of environmentally sensitive phase transformations
Iron oxides and oxyhydroxides are challenging to model computationally as
competing phases may differ in formation energies by only several kJ/mol, they
undergo magnetization transitions with temperature, their structures may
contain partially occupied sites or long-range ordering of vacancies, and some
loose structures require proper description of weak interactions such as
hydrogen bonding and dispersive forces. If structures and transformations are
to be reliably predicted under different chemical conditions, each of these
challenges must be overcome simultaneously, while preserving a high level of
numerical accuracy and physical sophistication. Here we present comparative
studies of structure, magnetization, and elasticity properties of iron oxides
and oxyhydroxides using density functional theory calculations with plane-wave
and locally-confined-atomic-orbital basis sets, which are implemented in VASP
and SIESTA packages, respectively. We have selected hematite, maghemite,
goethite, lepidocrocite, and magnetite as model systems from a total of 13
known iron oxides and oxyhydroxides; and use same convergence criteria and
almost equivalent settings in order to make consistent comparisons. Our results
show both basis sets can reproduce the energetic stability and magnetic
ordering, and are in agreement with experimental observations. There are
advantages to choosing one basis set over the other, depending on the intended
focus. In our case, we find the method using PW basis set most appropriate, and
combine our results to construct the first phase diagram of iron oxides and
oxyhydroxides in the space of competing chemical potentials, generated entirely
from first principlesComment: 46 pages - Accepted for publication in PRB (19 journal pages),
January 201
Frame-like Geometry of Double Field Theory
We relate two formulations of the recently constructed double field theory to
a frame-like geometrical formalism developed by Siegel. A self-contained
presentation of this formalism is given, including a discussion of the
constraints and its solutions, and of the resulting Riemann tensor, Ricci
tensor and curvature scalar. This curvature scalar can be used to define an
action, and it is shown that this action is equivalent to that of double field
theory.Comment: 35 pages, v2: minor corrections, to appear in J. Phys.
Gravitational signals emitted by a point mass orbiting a neutron star: effects of stellar structure
The effects that the structure of a neutron star would have on the
gravitational emission of a binary system are studied in a perturbative regime,
and in the frequency domain. Assuming that a neutron star is perturbed by a
point mass moving on a close, circular orbit, we solve the equations of stellar
perturbations in general relativity to evaluate the energy lost by the system
in gravitational waves. We compare the energy output obtained for different
stellar models with that found by assuming that the perturbed object is a black
hole with the same mass, and we discuss the role played by the excitation of
the stellar modes. Ouresults indicate that the stellar structure begins to
affect the emitted power when the orbital velocity is v >0.2c (about 185 Hz for
a binary system composed of two canonical neutron stars). We show that the
differences between different stellar models and a black hole are due mainly to
the excitation of the quasinormal modes of the star. Finally, we discuss to
what extent and up to which distance the perturbative approach can be used to
describe the interaction of a star and a pointlike massive body.Comment: 22 pages, 6 figures, to appear in Phys. Rev. D. Revised version,
added one table and extended discussio
Perturbing Around A Warped Product Of AdS_4 and Seven-Ellipsoid
We compute the spin-2 Kaluza-Klein modes around a warped product of AdS_4 and
a seven-ellipsoid. This background with global G_2 symmetry is related to a
U(N) x U(N) N=1 superconformal Chern-Simons matter theory with sixth order
superpotential. The mass-squared in AdS_4 is quadratic in G_2 quantum number
and KK excitation number. We determine the dimensions of spin-2 operators using
the AdS/CFT correspondence. The connection to N=2 theory preserving SU(3) x
U(1)_R is also discussed.Comment: 21pp; The second and last paragraphs of section 2, the footnotes 1
and 2 added and to appear in JHE
Reformulating Supersymmetry with a Generalized Dolbeault Operator
The conditions for N=1 supersymmetry in type II supergravity have been
previously reformulated in terms of generalized complex geometry. We improve
that reformulation so as to completely eliminate the remaining explicit
dependence on the metric. Doing so involves a natural generalization of the
Dolbeault operator. As an application, we present some general arguments about
supersymmetric moduli. In particular, a subset of them are then classified by a
certain cohomology. We also argue that the Dolbeault reformulation should make
it easier to find existence theorems for the N=1 equations.Comment: 30 pages, no figures. v2: minor correction
Effective actions and N=1 vacuum conditions from SU(3) x SU(3) compactifications
We consider compactifications of type II string theory on general SU(3) x
SU(3) structure backgrounds allowing for a very large set of fluxes, possibly
nongeometric ones. We study the effective 4d low energy theory which is a
gauged N=2 supergravity, and discuss how its data are obtained from the
formalism of the generalized geometry on T+T*. In particular we relate
Hitchin's special Kaehler metrics on the spaces of even and odd pure spinors to
the metric on the supergravity moduli space of internal metric and B-field
fluctuations. We derive the N=1 vacuum conditions from this N=2 effective
action, as well as from its N=1 truncation. We prove a direct correspondence
between these conditions and an integrated version of the pure spinor equations
characterizing the N=1 backgrounds at the ten dimensional level.Comment: 54 pages. v2, v3: minor change
Universal law of fractionation for slightly polydisperse systems
By perturbing about a general monodisperse system, we provide a complete description of two-phase equilibria in any system which is slightly polydisperse in some property (e.g., particle size, charge, etc.). We derive a universal law of fractionation which is corroborated by comprehensive experiments on a model colloid-polymer mixture. We furthermore predict that phase separation is an effective method of reducing polydispersity only for systems with a skewed distribution of the polydisperse property
Structure, Deformations and Gravitational Wave Emission of Magnetars
Neutron stars can have, in some phases of their life, extremely strong
magnetic fields, up to 10^15-10^16 G. These objects, named magnetars, could be
powerful sources of gravitational waves, since their magnetic field could
determine large deformations. We discuss the structure of the magnetic field of
magnetars, and the deformation induced by this field. Finally, we discuss the
perspective of detection of the gravitational waves emitted by these stars.Comment: 11 pages, 2 figures, prepared for 19th International Conference on
General Relativity and Gravitation (GR19), Mexico City, Mexico, July 5-9,
201
Two-parameter non-linear spacetime perturbations: gauge transformations and gauge invariance
An implicit fundamental assumption in relativistic perturbation theory is
that there exists a parametric family of spacetimes that can be Taylor expanded
around a background. The choice of the latter is crucial to obtain a manageable
theory, so that it is sometime convenient to construct a perturbative formalism
based on two (or more) parameters. The study of perturbations of rotating stars
is a good example: in this case one can treat the stationary axisymmetric star
using a slow rotation approximation (expansion in the angular velocity Omega),
so that the background is spherical. Generic perturbations of the rotating star
(say parametrized by lambda) are then built on top of the axisymmetric
perturbations in Omega. Clearly, any interesting physics requires non-linear
perturbations, as at least terms lambda Omega need to be considered. In this
paper we analyse the gauge dependence of non-linear perturbations depending on
two parameters, derive explicit higher order gauge transformation rules, and
define gauge invariance. The formalism is completely general and can be used in
different applications of general relativity or any other spacetime theory.Comment: 22 pages, 3 figures. Minor changes to match the version appeared in
Classical and Quantum Gravit
- …