230 research outputs found
Light Engineering of the Polariton Landscape in Semiconductor Microcavities
We demonstrate a method to create potential barriers with polarized light
beams for polaritons in semiconductor microcavities. The form of the barriers
is engineered via the real space shape of a focalised beam on the sample. Their
height can be determined by the visibility of the scattering waves generated in
a polariton fluid interacting with them. This technique opens up the way to the
creation of dynamical potentials and defects of any shape in semiconductor
microcavities.Comment: 4 pages, 5 figure
Effect of charging on CdSe/CdS dot-in-rods single-photon emission
The photon statistics of CdSe/CdS dot-in-rods nanocrystals is studied with a
method involving post-selection of the photon detection events based on the
photoluminescence count rate. We show that flickering between two states needs
to be taken into account to interpret the single-photon emission properties.
With post-selection we are able to identify two emitting states: the exciton
and the charged exciton (trion), characterized by different lifetimes and
different second order correlation functions. Measurements of the second order
autocorrelation function at zero delay with post- selection shows a degradation
of the single photon emission for CdSe/CdS dot-in-rods in a charged state that
we explain by deriving the neutral and charged biexciton quantum yields.Comment: 10 pages, 5 figure
Photon correlations for colloidal nanocrystals and their clusters
Images of semiconductor `dot in rods' and their small clusters are studied by
measuring the second-order correlation function with a spatially resolving ICCD
camera. This measurement allows one to distinguish between a single dot and a
cluster and, to a certain extent, to estimate the number of dots in a cluster.
A more advanced measurement is proposed, based on higher-order correlations,
enabling more accurate determination of the number of dots in a small cluster.
Nonclassical features of the light emitted by such a cluster are analyzed.Comment: 4 pages, 4 figure
Electromagnetically induced transparency in inhomogeneously broadened Lambda-transition with multiple excited levels
Electromagnetically induced transparency (EIT) has mainly been modelled for
three-level systems. In particular, a considerable interest has been dedicated
to the Lambda-configuration, with two ground states and one excited state.
However, in the alkali-metal atoms, which are commonly used, hyperfine
interaction in the excited state introduces several levels which simultaneously
participate in the scattering process. When the Doppler broadening is
comparable with the hyperfine splitting in the upper state, the three-level
Lambda model does not reproduce the experimental results. Here we theoretically
investigate the EIT in a hot vapor of alkali-metal atoms and demonstrate that
it can be strongly reduced due to the presence of multiple excited levels.
Given this model, we also show that a well-designed optical pumping enables to
significantly recover the transparency
Vortex and half-vortex dynamics in a spinor quantum fluid of interacting polaritons
Spinorial or multi-component Bose-Einstein condensates may sustain fractional
quanta of circulation, vorticant topological excitations with half integer
windings of phase and polarization. Matter-light quantum fluids, such as
microcavity polaritons, represent a unique test bed for realising strongly
interacting and out-of-equilibrium condensates. The direct access to the phase
of their wavefunction enables us to pursue the quest of whether half vortices
---rather than full integer vortices--- are the fundamental topological
excitations of a spinor polariton fluid. Here, we are able to directly generate
by resonant pulsed excitations, a polariton fluid carrying either the half or
full vortex states as initial condition, and to follow their coherent evolution
using ultrafast holography. Surprisingly we observe a rich phenomenology that
shows a stable evolution of a phase singularity in a single component as well
as in the full vortex state, spiraling, splitting and branching of the initial
cores under different regimes and the proliferation of many vortex anti-vortex
pairs in self generated circular ripples. This allows us to devise the
interplay of nonlinearity and sample disorder in shaping the fluid and driving
the phase singularities dynamicsComment: New version complete with revised modelization, discussion and added
material. 8 pages, 7 figures. Supplementary videos:
https://drive.google.com/folderview?id=0B0QCllnLqdyBfmc2ai0yVF9fa2g2VnZodGUwemVkLThBb3BoOVRKRDJMS2dUdjlZdkRTQk
Comment on "Linear wave dynamics explains observations attributed to dark-solitons in a polariton quantum fluid"
In a recent preprint (arXiv:1401.1128v1) Cilibrizzi and co-workers report
experiments and simulations showing the scattering of polaritons against a
localised obstacle in a semiconductor microcavity. The authors observe in the
linear excitation regime the formation of density and phase patterns
reminiscent of those expected in the non-linear regime from the nucleation of
dark solitons. Based on this observation, they conclude that previous
theoretical and experimental reports on dark solitons in a polariton system
should be revised. Here we comment why the results from Cilibrizzi et al. take
place in a very different regime than previous investigations on dark soliton
nucleation and do not reproduce all the signatures of its rich nonlinear
phenomenology. First of all, Cilibrizzi et al. consider a particular type of
radial excitation that strongly determines the observed patterns, while in
previous reports the excitation has a plane-wave profile. Most importantly, the
nonlinear relation between phase jump, soliton width and fluid velocity, and
the existence of a critical velocity with the time-dependent formation of
vortex-antivortex pairs are absent in the linear regime. In previous reports
about dark soliton and half-dark soliton nucleation in a polariton fluid, the
distinctive dark soliton physics is supported both by theory (analytical and
numerical) and experiments (both continuous wave and pulsed excitation).Comment: 4 pages, 2 figure
Ultrafast control of Rabi oscillations in a polariton condensate
We report the experimental observation and control of space and time-resolved
light-matter Rabi oscillations in a microcavity. Our setup precision and the
system coherence are so high that coherent control can be implemented with
amplification or switching off of the oscillations and even erasing of the
polariton density by optical pulses. The data is reproduced by a fundamental
quantum optical model with excellent accuracy, providing new insights on the
key components that rule the polariton dynamics.Comment: 5 pages, 3 figures, supplementary 7 pages, 4 figures. Supplementary
videos:
https://drive.google.com/folderview?id=0B0QCllnLqdyBNjlMLTdjZlNhbTQ&usp=sharin
- …