4,200 research outputs found
An Online Approach to Dynamic Channel Access and Transmission Scheduling
Making judicious channel access and transmission scheduling decisions is
essential for improving performance as well as energy and spectral efficiency
in multichannel wireless systems. This problem has been a subject of extensive
study in the past decade, and the resulting dynamic and opportunistic channel
access schemes can bring potentially significant improvement over traditional
schemes. However, a common and severe limitation of these dynamic schemes is
that they almost always require some form of a priori knowledge of the channel
statistics. A natural remedy is a learning framework, which has also been
extensively studied in the same context, but a typical learning algorithm in
this literature seeks only the best static policy, with performance measured by
weak regret, rather than learning a good dynamic channel access policy. There
is thus a clear disconnect between what an optimal channel access policy can
achieve with known channel statistics that actively exploits temporal, spatial
and spectral diversity, and what a typical existing learning algorithm aims
for, which is the static use of a single channel devoid of diversity gain. In
this paper we bridge this gap by designing learning algorithms that track known
optimal or sub-optimal dynamic channel access and transmission scheduling
policies, thereby yielding performance measured by a form of strong regret, the
accumulated difference between the reward returned by an optimal solution when
a priori information is available and that by our online algorithm. We do so in
the context of two specific algorithms that appeared in [1] and [2],
respectively, the former for a multiuser single-channel setting and the latter
for a single-user multichannel setting. In both cases we show that our
algorithms achieve sub-linear regret uniform in time and outperforms the
standard weak-regret learning algorithms.Comment: 10 pages, to appear in MobiHoc 201
Redundancy Scheduling with Locally Stable Compatibility Graphs
Redundancy scheduling is a popular concept to improve performance in
parallel-server systems. In the baseline scenario any job can be handled
equally well by any server, and is replicated to a fixed number of servers
selected uniformly at random. Quite often however, there may be heterogeneity
in job characteristics or server capabilities, and jobs can only be replicated
to specific servers because of affinity relations or compatibility constraints.
In order to capture such situations, we consider a scenario where jobs of
various types are replicated to different subsets of servers as prescribed by a
general compatibility graph. We exploit a product-form stationary distribution
and weak local stability conditions to establish a state space collapse in
heavy traffic. In this limiting regime, the parallel-server system with
graph-based redundancy scheduling operates as a multi-class single-server
system, achieving full resource pooling and exhibiting strong insensitivity to
the underlying compatibility constraints.Comment: 28 pages, 4 figure
Asymptotically Optimal Load Balancing Topologies
We consider a system of servers inter-connected by some underlying graph
topology . Tasks arrive at the various servers as independent Poisson
processes of rate . Each incoming task is irrevocably assigned to
whichever server has the smallest number of tasks among the one where it
appears and its neighbors in . Tasks have unit-mean exponential service
times and leave the system upon service completion.
The above model has been extensively investigated in the case is a
clique. Since the servers are exchangeable in that case, the queue length
process is quite tractable, and it has been proved that for any ,
the fraction of servers with two or more tasks vanishes in the limit as . For an arbitrary graph , the lack of exchangeability severely
complicates the analysis, and the queue length process tends to be worse than
for a clique. Accordingly, a graph is said to be -optimal or
-optimal when the occupancy process on is equivalent to that on
a clique on an -scale or -scale, respectively.
We prove that if is an Erd\H{o}s-R\'enyi random graph with average
degree , then it is with high probability -optimal and
-optimal if and as , respectively. This demonstrates that optimality can
be maintained at -scale and -scale while reducing the number of
connections by nearly a factor and compared to a
clique, provided the topology is suitably random. It is further shown that if
contains bounded-degree nodes, then it cannot be -optimal.
In addition, we establish that an arbitrary graph is -optimal when its
minimum degree is , and may not be -optimal even when its minimum
degree is for any .Comment: A few relevant results from arXiv:1612.00723 are included for
convenienc
Mixing Properties of CSMA Networks on Partite Graphs
We consider a stylized stochastic model for a wireless CSMA network.
Experimental results in prior studies indicate that the model provides
remarkably accurate throughput estimates for IEEE 802.11 systems. In
particular, the model offers an explanation for the severe spatial unfairness
in throughputs observed in such networks with asymmetric interference
conditions. Even in symmetric scenarios, however, it may take a long time for
the activity process to move between dominant states, giving rise to potential
starvation issues. In order to gain insight in the transient throughput
characteristics and associated starvation effects, we examine in the present
paper the behavior of the transition time between dominant activity states. We
focus on partite interference graphs, and establish how the magnitude of the
transition time scales with the activation rate and the sizes of the various
network components. We also prove that in several cases the scaled transition
time has an asymptotically exponential distribution as the activation rate
grows large, and point out interesting connections with related exponentiality
results for rare events and meta-stability phenomena in statistical physics. In
addition, we investigate the convergence rate to equilibrium of the activity
process in terms of mixing times.Comment: Valuetools, 6th International Conference on Performance Evaluation
Methodologies and Tools, October 9-12, 2012, Carg\`ese, Franc
Slow transitions, slow mixing and starvation in dense random-access networks
We consider dense wireless random-access networks, modeled as systems of
particles with hard-core interaction. The particles represent the network users
that try to become active after an exponential back-off time, and stay active
for an exponential transmission time. Due to wireless interference, active
users prevent other nearby users from simultaneous activity, which we describe
as hard-core interaction on a conflict graph. We show that dense networks with
aggressive back-off schemes lead to extremely slow transitions between dominant
states, and inevitably cause long mixing times and starvation effects.Comment: 29 pages, 5 figure
Achievable Performance in Product-Form Networks
We characterize the achievable range of performance measures in product-form
networks where one or more system parameters can be freely set by a network
operator. Given a product-form network and a set of configurable parameters, we
identify which performance measures can be controlled and which target values
can be attained. We also discuss an online optimization algorithm, which allows
a network operator to set the system parameters so as to achieve target
performance metrics. In some cases, the algorithm can be implemented in a
distributed fashion, of which we give several examples. Finally, we give
conditions that guarantee convergence of the algorithm, under the assumption
that the target performance metrics are within the achievable range.Comment: 50th Annual Allerton Conference on Communication, Control and
Computing - 201
Universality of Load Balancing Schemes on Diffusion Scale
We consider a system of parallel queues with identical exponential
service rates and a single dispatcher where tasks arrive as a Poisson process.
When a task arrives, the dispatcher always assigns it to an idle server, if
there is any, and to a server with the shortest queue among randomly
selected servers otherwise . This load balancing scheme
subsumes the so-called Join-the-Idle Queue (JIQ) policy and the
celebrated Join-the-Shortest Queue (JSQ) policy as two crucial
special cases. We develop a stochastic coupling construction to obtain the
diffusion limit of the queue process in the Halfin-Whitt heavy-traffic regime,
and establish that it does not depend on the value of , implying that
assigning tasks to idle servers is sufficient for diffusion level optimality
- …