68 research outputs found

    Exponential mixing and log h time scales in quantized hyperbolic maps on the torus

    Full text link
    We study the behaviour, in the simultaneous limits \hbar going to 0, t going to \infty, of the Husimi and Wigner distributions of initial coherent states and position eigenstates, evolved under the quantized hyperbolic toral automorphisms and the quantized baker map. We show how the exponential mixing of the underlying dynamics manifests itself in those quantities on time scales logarithmic in \hbar. The phase space distributions of the coherent states, evolved under either of those dynamics, are shown to equidistribute on the torus in the limit \hbar going to 0, for times t between |\log\hbar|/(2\gamma) and |\log|\hbar|/\gamma, where \gamma is the Lyapounov exponent of the classical system. For times shorter than |\log\hbar|/(2\gamma), they remain concentrated on the classical trajectory of the center of the coherent state. The behaviour of the phase space distributions of evolved position eigenstates, on the other hand, is not the same for the quantized automorphisms as for the baker map. In the first case, they equidistribute provided t goes to \infty as \hbar goes to 0, and as long as t is shorter than |\log\hbar|/\gamma. In the second case, they remain localized on the evolved initial position at all such times

    Scarred eigenstates for quantum cat maps of minimal periods

    Full text link
    In this paper we construct a sequence of eigenfunctions of the ``quantum Arnold's cat map'' that, in the semiclassical limit, show a strong scarring phenomenon on the periodic orbits of the dynamics. More precisely, those states have a semiclassical limit measure that is the sum of 1/2 the normalized Lebesgue measure on the torus plus 1/2 the normalized Dirac measure concentrated on any a priori given periodic orbit of the dynamics. It is known (the Schnirelman theorem) that ``most'' sequences of eigenfunctions equidistribute on the torus. The sequences we construct therefore provide an example of an exception to this general rule. Our method of construction and proof exploits the existence of special values of Planck's constant for which the quantum period of the map is relatively ``short'', and a sharp control on the evolution of coherent states up to this time scale. We also provide a pointwise description of these states in phase space, which uncovers their ``hyperbolic'' structure in the vicinity of the fixed points and yields more precise localization estimates.Comment: LaTeX, 49 pages, includes 10 figures. I added section 6.6. To be published in Commun. Math. Phy

    Heteroclinic structure of parametric resonance in the nonlinear Schr\"odinger equation

    Full text link
    We show that the nonlinear stage of modulational instability induced by parametric driving in the {\em defocusing} nonlinear Schr\"odinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearised Floquet analysis

    Spectral flow and level spacing of edge states for quantum Hall hamiltonians

    Full text link
    We consider a non relativistic particle on the surface of a semi-infinite cylinder of circumference LL submitted to a perpendicular magnetic field of strength BB and to the potential of impurities of maximal amplitude ww. This model is of importance in the context of the integer quantum Hall effect. In the regime of strong magnetic field or weak disorder B>>wB>>w it is known that there are chiral edge states, which are localised within a few magnetic lengths close to, and extended along the boundary of the cylinder, and whose energy levels lie in the gaps of the bulk system. These energy levels have a spectral flow, uniform in LL, as a function of a magnetic flux which threads the cylinder along its axis. Through a detailed study of this spectral flow we prove that the spacing between two consecutive levels of edge states is bounded below by 2παL−12\pi\alpha L^{-1} with α>0\alpha>0, independent of LL, and of the configuration of impurities. This implies that the level repulsion of the chiral edge states is much stronger than that of extended states in the usual Anderson model and their statistics cannot obey one of the Gaussian ensembles. Our analysis uses the notion of relative index between two projections and indicates that the level repulsion is connected to topological aspects of quantum Hall systems.Comment: 22 pages, no figure

    Simultaneous quantization of edge and bulk Hall conductivity

    Full text link
    The edge Hall conductivity is shown to be an integer multiple of e2/he^2/h which is almost surely independent of the choice of the disordered configuration. Its equality to the bulk Hall conductivity given by the Kubo-Chern formula follows from K-theoretic arguments. This leads to quantization of the Hall conductance for any redistribution of the current in the sample. It is argued that in experiments at most a few percent of the total current can be carried by edge states.Comment: 6 pages Latex, 1 figur

    One-loop approximation of Moller scattering in Krein-space quantization

    Full text link
    It has been shown that the negative-norm states necessarily appear in a covariant quantization of the free minimally coupled scalar field in de Sitter spacetime [1,2]. In this processes ultraviolet and infrared divergences have been automatically eliminated [3]. A natural renormalization of the one-loop interacting quantum field in Minkowski spacetime (λϕ4\lambda\phi^4) has been achieved through the consideration of the negative-norm states defined in Krein space. It has been shown that the combination of quantum field theory in Krein space together with consideration of quantum metric fluctuation, results in quantum field theory without any divergences [4]. Pursuing this approach, we express Wick's theorem and calculate M{\o}ller scattering in the one-loop approximation in Krein space. The mathematical consequence of this method is the disappearance of the ultraviolet divergence in the one-loop approximation.Comment: 10 page

    Properties and Applications of the Kirkwood-Dirac Distribution

    Full text link
    The most famous quasi-probability distribution, the Wigner function, has played a pivotal role in the development of a continuous-variable quantum theory that has clear analogues of position and momentum. However, the Wigner function is ill-suited for much modern quantum-information research, which is focused on finite-dimensional systems and general observables. Instead, recent years have seen the Kirkwood-Dirac (KD) distribution come to the forefront as a powerful quasi-probability distribution for analysing quantum mechanics. The KD distribution allows tools from statistics and probability theory to be applied to problems in quantum-information processing. A notable difference to the Wigner function is that the KD distribution can represent a quantum state in terms of arbitrary observables. This paper reviews the KD distribution, in three parts. First, we present definitions and basic properties of the KD distribution and its generalisations. Second, we summarise the KD distribution's extensive usage in the study or development of measurement disturbance; quantum metrology; weak values; direct measurements of quantum states; quantum thermodynamics; quantum scrambling and out-of-time-ordered correlators; and the foundations of quantum mechanics, including Leggett-Garg inequalities, the consistent-histories interpretation, and contextuality. We emphasise connections between operational quantum advantages and negative or non-real KD quasi-probabilities. Third, we delve into the KD distribution's mathematical structure. We summarise the current knowledge regarding the geometry of KD-positive states (the states for which the KD distribution is a classical probability distribution), describe how to witness and quantify KD non-positivity, and outline relationships between KD non-positivity and observables' incompatibility.Comment: 37 pages, 13 figure
    • 

    corecore