235 research outputs found

    Dilaton Stabilization in Brane Gas Cosmology

    Full text link
    Brane Gas Cosmology is an M-theory motivated attempt to reconcile aspects of the standard cosmology based on Einstein's theory of general relativity. Dilaton gravity, when incorporating winding p-brane states, has verified the Brandenberger--Vafa mechanism --a string-motivated conjecture which explains why only three of the nine spatial dimensions predicted by string theory grow large. Further investigation of this mechanism has argued for a hierarchy of subspaces, and has shown the internal directions to be stable to initial perturbations. These results, however, are dependent on a rolling dilaton, or varying strength of Newton's gravitational constant. In these proceedings we show that it is not possible to stabilize the dilaton and maintain the stability of the internal directions within the standard Brane Gas Cosmology setup.Comment: 6 pages, no figures. To appear in the Proceedings of MRST 2004, held at Concordia University, Montreal, QC, 12-14 May 200

    T and S dualities and The cosmological evolution of the dilaton and the scale factors

    Get PDF
    Cosmologically stabilizing radion along with the dilaton is one of the major concerns of low energy string theory. One can hope that T and S dualities can provide a plausible answer. In this work we study the impact of S and T duality invariances on dilaton gravity. We have shown various instances where physically interesting models arise as a result of imposing the mentioned invariances. In particular S duality has a very privileged effect in that the dilaton equations partially decouple from the evolution of the scale factors. This makes it easy to understand the general rules for the stabilization of the dilaton. We also show that certain T duality invariant actions become S duality invariance compatible. That is they mimic S duality when extra dimensions stabilize.Comment: Corrected a misleading interpretation of the S duality transformation and a wrong comment on d=10. I thank A.Kaya for pointing this out to me in time. So the new version is dealing with d=10 only. Added references and corrected some typos. Minor re-editing. Omitted a section for elaboration in a further study. Corrected further typo

    Dynamical decompactification from brane gases in eleven-dimensional supergravity

    Full text link
    Brane gas cosmology provides a dynamical decompactification mechanism that could account for the number of spacetime dimensions we observe today. In this work we discuss this scenario taking into account the full bosonic sector of eleven-dimensional supergravity. We find new cosmological solutions that can dynamically explain the existence of three large spatial dimensions characterised by an universal asymptotic scaling behaviour and a large number of initially unwrapped dimensions. This type of solutions enlarge the possible initial conditions of the Universe in the Hagedorn phase and consequently can potentially increase the probability of dynamical decompactification from anisotropically wrapped backgrounds.Comment: 8 figures, JHEP3 styl

    Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Get PDF
    This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe

    String windings in the early universe

    Full text link
    We study string dynamics in the early universe. Our motivation is the proposal of Brandenberger and Vafa, that string winding modes may play a key role in decompactifying three spatial dimensions. We model the universe as a homogeneous but anisotropic 9-torus filled with a gas of excited strings. We adopt initial conditions which fix the dilaton and the volume of the torus, but otherwise assume all states are equally likely. We study the evolution of the system both analytically and numerically to determine the late-time behavior. We find that, although dynamical evolution can indeed lead to three large spatial dimensions, such an outcome is not statistically favored.Comment: 26 pages, LaTeX, 4 eps figure

    String Gas Cosmology and Structure Formation

    Get PDF
    It has recently been shown that a Hagedorn phase of string gas cosmology may provide a causal mechanism for generating a nearly scale-invariant spectrum of scalar metric fluctuations, without the need for an intervening period of de Sitter expansion. A distinctive signature of this structure formation scenario would be a slight blue tilt of the spectrum of gravitational waves. In this paper we give more details of the computations leading to these results.Comment: 12 pages, 3 figure

    A millisecond pulsar in a stellar triple system

    Full text link
    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses, and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, B1620-26 (with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multi-wavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar (1.4378(13) Msun, where Msun is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15) Msun and 0.4101(3) Msun), as well as the inclinations of the orbits (both approximately 39.2 degrees). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.Comment: 17 pages, 3 figures, 1 table. Published online by Nature on 5 Jan 2014. Extremely minor differences with published version may exis

    String Gas Cosmology

    Get PDF
    We present a critical review and summary of String Gas Cosmology. We include a pedagogical derivation of the effective action starting from string theory, emphasizing the necessary approximations that must be invoked. Working in the effective theory, we demonstrate that at late-times it is not possible to stabilize the extra dimensions by a gas of massive string winding modes. We then consider additional string gases that contain so-called enhanced symmetry states. These string gases are very heavy initially, but drive the moduli to locations that minimize the energy and pressure of the gas. We consider both classical and quantum gas dynamics, where in the former the validity of the theory is questionable and some fine-tuning is required, but in the latter we find a consistent and promising stabilization mechanism that is valid at late-times. In addition, we find that string gases provide a framework to explore dark matter, presenting alternatives to Λ\LambdaCDM as recently considered by Gubser and Peebles. We also discuss quantum trapping with string gases as a method for including dynamics on the string landscape.Comment: 55 pages, 1 figure, minor corrections, version to appear in Reviews of Modern Physic

    Moduli Stabilization in Brane Gas Cosmology with Superpotentials

    Full text link
    In the context of brane gas cosmology in superstring theory, we show why it is impossible to simultaneously stabilize the dilaton and the radion with a general gas of strings (including massless modes) and D-branes. Although this requires invoking a different mechanism to stabilize these moduli fields, we find that the brane gas can still play a crucial role in the early universe in assisting moduli stabilization. We show that a modest energy density of specific types of brane gas can solve the overshoot problem that typically afflicts potentials arising from gaugino condensation.Comment: minor changes to match the journal versio
    • …
    corecore