150 research outputs found
Synchronization Gauges and the Principles of Special Relativity
The axiomatic bases of Special Relativity Theory (SRT) are thoroughly
re-examined from an operational point of view, with particular emphasis on the
status of Einstein synchronization in the light of the possibility of arbitrary
synchronization procedures in inertial reference frames. Once correctly and
explicitly phrased, the principles of SRT allow for a wide range of `theories'
that differ from the standard SRT only for the difference in the chosen
synchronization procedures, but are wholly equivalent to SRT in predicting
empirical facts. This results in the introduction, in the full background of
SRT, of a suitable synchronization gauge. A complete hierarchy of
synchronization gauges is introduced and elucidated, ranging from the useful
Selleri synchronization gauge (which should lead, according to Selleri, to a
multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl
synchronization gauge and, finally, to the even more general
Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all
these gauges do not challenge the SRT, as claimed by Selleri, but simply lead
to a number of formalisms which leave the geometrical structure of Minkowski
spacetime unchanged. Several aspects of fundamental and applied interest
related to the conventional aspect of the synchronization choice are discussed,
encompassing the issue of the one-way velocity of light on inertial and
rotating reference frames, the GPS's working, and the recasting of Maxwell
equations in generic synchronizations. Finally, it is showed how the gauge
freedom introduced in SRT can be exploited in order to give a clear explanation
of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of
Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday
The Ithaca Interpretation of Quantum Mechanics
I list several strong requirements for what I would consider a sensible
interpretation of quantum mechanics and I discuss two simple theorems. One, as
far as I know, is new; the other was only noted a few years ago. Both have
important implications for such a sensible interpretation. My talk will not
clear everything up; indeed, you may conclude that it has not cleared anything
up. But I hope it will provide a different perspective from which to view some
old and vexing puzzles (or, if you believe nothing needs to be cleared up, some
ancient verities.)Comment: 21 pages, plain TEX. Notes for a lecture given at the Golden Jubilee
Workshop on Foundations of Quantum Theory, Tata Institute, Bombay, September
9-12, 199
The MEDGICarb-Study: Design of a multi-center randomized controlled trial to determine the differential health-promoting effects of low- and high-glycemic index Mediterranean-style eating patterns
Adults with central adiposity and other features of the metabolic syndrome have a markedly elevated risk of developing type 2 diabetes (T2D) and cardiovascular disease (CVD). A Mediterranean-style healthy eating pattern (MED-HEP) and consumption of foods with a lower glycemic index (GI) are potential dietary approaches to curb the T2D and CVD epidemic. However, experimental evidence of the effectiveness of MED-HEP and of the contribution of GI towards improving indices of glucose homeostasis, especially among non-diabetic people, are lacking. Therefore, we developed the MedGI-Carb trial, a multi-center (Italy, Sweden, and United States) intervention in adults with at least two components of the metabolic syndrome (elevated waist circumference + one other component) that aims to improve markers of glucose homeostasis through dietary modification. All participants were randomized to consume an isocaloric high- or low-GI MED-HEP for 12 weeks. We hypothesized that indexes of insulinemia (primary outcome: postprandial insulin and glucose after standardized breakfast and lunch; secondary outcomes: fasting plasma glucose and insulin, HbA1c, 24-h continuous glucose monitoring) would be improved more with the low-GI versus the high-GI MED-HEP. Additionally, we hypothesized that consumption of a MED-HEP would improve other markers of cardiometabolic health and well-being (fasting blood pressure, fasting lipid profile, sleep quality, satiety, global metabolic alterations in the plasma metabolome, changes in the gut microbiota, subjective health and well-being), with no difference between groups. Collectively, the design of MEDGI-Carb allows several different research questions to be explored. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03410719
Integrability and chaos: the classical uncertainty
In recent years there has been a considerable increase in the publishing of
textbooks and monographs covering what was formerly known as random or
irregular deterministic motion, now named by the more fashionable term of
deterministic chaos. There is still substantial interest in a matter that is
included in many graduate and even undergraduate courses on classical
mechanics. Based on the Hamiltonian formalism, the main objective of this
article is to provide, from the physicist's point of view, an overall and
intuitive review of this broad subject (with some emphasis on the KAM theorem
and the stability of planetary motions) which may be useful to both students
and instructors.Comment: 24 pages, 10 figure
A direct kinematical derivation of the relativistic Sagnac effect for light or matter beams
The Sagnac time delay and the corresponding Sagnac phase shift, for
relativistic matter and electromagnetic beams counter-propagating in a rotating
interferometer, are deduced on the ground of relativistic kinematics. This
purely kinematical approach allows to explain the ''universality'' of the
effect, namely the fact that the Sagnac time difference does not depend on the
physical nature of the interfering beams. The only prime requirement is that
the counter-propagating beams have the same velocity with respect to any
Einstein synchronized local co-moving inertial frame.Comment: 10 pages, 1 EPS figure, to appear in General Relativity and
Gravitatio
The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams
The phase shift due to the Sagnac Effect, for relativistic matter beams
counter-propagating in a rotating interferometer, is deduced on the bases of a
a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by
Sakurai, in which non relativistic quantum mechanics and newtonian physics
appear together with some intrinsically relativistic elements, is generalized
to a fully relativistic context, using the Cattaneo's splitting technique. This
approach leads to an exact derivation, in a self-consistently relativistic way,
of the Sagnac effect. Sakurai's result is recovered in the first order
approximation.Comment: 18 pages, LaTeX, 2 EPS figures. To appear in General Relativity and
Gravitatio
The relativistic Sagnac Effect: two derivations
The phase shift due to the Sagnac Effect, for relativistic matter and
electromagnetic beams, counter-propagating in a rotating interferometer, is
deduced using two different approaches. From one hand, we show that the
relativistic law of velocity addition leads to the well known Sagnac time
difference, which is the same independently of the physical nature of the
interfering beams, evidencing in this way the universality of the effect.
Another derivation is based on a formal analogy with the phase shift induced by
the magnetic potential for charged particles travelling in a region where a
constant vector potential is present: this is the so called Aharonov-Bohm
effect. Both derivations are carried out in a fully relativistic context, using
a suitable 1+3 splitting that allows us to recognize and define the space where
electromagnetic and matter waves propagate: this is an extended 3-space, which
we call "relative space". It is recognized as the only space having an actual
physical meaning from an operational point of view, and it is identified as the
'physical space of the rotating platform': the geometry of this space turns out
to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor
corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and
M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also
http://digilander.libero.it/solciclo
La teoria relativistica dell'elettrone
Introduzione storica all'equazione di Dira
La relativit\ue0 generale: mezzo secolo di successi dopo una lunga fase di stanca
Storia della relativit\ue0 generale dalla formulazione ai giorni nostr
- …