45 research outputs found

    The haptic perception of spatial orientations

    Get PDF
    This review examines the isotropy of the perception of spatial orientations in the haptic system. It shows the existence of an oblique effect (i.e., a better perception of vertical and horizontal orientations than oblique orientations) in a spatial plane intrinsic to the haptic system, determined by the gravitational cues and the cognitive resources and defined in a subjective frame of reference. Similar results are observed from infancy to adulthood. In 3D space, the haptic processing of orientations is also anisotropic and seems to use both egocentric and allocentric cues. Taken together, these results revealed that the haptic oblique effect occurs when the sensory motor traces associated with exploratory movement are represented more abstractly at a cognitive level

    Sur le prosodie des chansons cleftiques

    No full text

    Sur la Strophe de la Chanson 'Cleftique'

    No full text

    Accuracy of Intercepting Moving Tactile Targets

    No full text
    When intercepting a moving target, we typically rely on vision to determine where the target is and where it will soon be. The accuracy of visually guided interception can be represented by a model that combines the perceived position and velocity of the target to estimate when and where to hit it and guides the finger accordingly with a short delay. We might expect the accuracy of interception to similarly depend on haptic judgments of position and velocity. To test this, we conducted separate experiments to measure the precision and any biases in tactile perception of position and velocity and used our findings to predict the precision and biases that would be present in an interception task if it were performed according to the principle described earlier. We then performed a tactile interception task to test our predictions. We found that interception of tactile targets is guided by similar principles as interception of visual targets

    The functional and structural neural basis of individual difference in loss aversion

    No full text
    Decision making under risk entails the anticipation of prospective outcomes, typically leading to the greater sensitivity to losses than gains known as loss aversion. Previous studies on the neural bases of choice-outcome anticipation and loss aversion provided inconsistent results, showing either bidirectional mesolimbic responses of activation for gains and deactivation for losses, or a specific amygdala involvement in processing losses. Here we focused on loss aversion with the aim to address interindividual differences in the neural bases of choice-outcome anticipation. Fifty-six healthy human participants accepted or rejected 104 mixed gambles offering equal (50%) chances of gaining or losing different amounts of money while their brain activity was measured with functional magnetic resonance imaging (fMRI). We report both bidirectional and gain/loss-specific responses while evaluating risky gambles, with amygdala and posterior insula specifically tracking the magnitude of potential losses. At the individual level, loss aversion was reflected both in limbic fMRI responses and in gray matter volume in a structural amygdala–thalamus–striatum network, in which the volume of the “output” centromedial amygdala nuclei mediating avoidance behavior was negatively correlated with monetary performance. We conclude that outcome anticipation and ensuing loss aversion involve multiple neural systems, showing functional and structural individual variability directly related to the actual financial outcomes of choices. By supporting the simultaneous involvement of both appetitive and aversive processing in economic decision making, these results contribute to the interpretation of existing inconsistencies on the neural bases of anticipating choice outcomes

    Optimal integration of intraneural somatosensory feedback with visual information: a single-case study

    No full text
    Providing somatosensory feedback to amputees is a long-standing objective in prosthesis research. Recently, implantable neural interfaces have yielded promising results in this direction. There is now considerable evidence that the nervous system integrates redundant signals optimally, weighting each signal according to its reliability. One question of interest is whether artificial sensory feedback is combined with other sensory information in a natural manner. In this single-case study, we show that an amputee with a bidirectional prosthesis integrated artificial somatosensory feedback and blurred visual information in a statistically optimal fashion when estimating the size of a hand-held object. The patient controlled the opening and closing of the prosthetic hand through surface electromyography, and received intraneural stimulation proportional to the object’s size in the ulnar nerve when closing the robotic hand on the object. The intraneural stimulation elicited a vibration sensation in the phantom hand that substituted the missing haptic feedback. This result indicates that sensory substitution based on intraneural feedback can be integrated with visual feedback and make way for a promising method to investigate multimodal integration processes
    corecore