121 research outputs found

    In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes)

    Get PDF
    We collaborated with Amgen and spent five years in designing and fabricating next generation multi-well plate imagers based on Fourier ptychographic microscopy (FPM). A 6-well imager (Emsight) and a low-cost parallel microscopic system (96 Eyes) based on parallel FPM were reported in our previous work. However, the effect of liquid meniscus on the image quality is much stronger than anticipated, introducing obvious wavevector misalignment and additional image aberration. To this end, an adaptive wavevector correction (AWC-FPM) algorithm and a pupil recovery improvement strategy are presented to solve these challenges in situ. In addition, dual-channel fluorescence excitation is added to obtain structural information for microbiologists. Experiments are demonstrated to verify their performances. The accuracy of angular resolution with our algorithm is within 0.003 rad. Our algorithms would make the FPM algorithm more robust and practical and can be extended to other FPM-based applications to overcome similar challenges

    In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes)

    Get PDF
    We collaborated with Amgen and spent five years in designing and fabricating next generation multi-well plate imagers based on Fourier ptychographic microscopy (FPM). A 6-well imager (Emsight) and a low-cost parallel microscopic system (96 Eyes) based on parallel FPM were reported in our previous work. However, the effect of liquid meniscus on the image quality is much stronger than anticipated, introducing obvious wavevector misalignment and additional image aberration. To this end, an adaptive wavevector correction (AWC-FPM) algorithm and a pupil recovery improvement strategy are presented to solve these challenges in situ. In addition, dual-channel fluorescence excitation is added to obtain structural information for microbiologists. Experiments are demonstrated to verify their performances. The accuracy of angular resolution with our algorithm is within 0.003 rad. Our algorithms would make the FPM algorithm more robust and practical and can be extended to other FPM-based applications to overcome similar challenges

    Archaea catalyze iron-dependent anaerobic oxidation of methane

    Get PDF
    Anaerobic oxidation of methane (AOM) is crucial for controlling the emission of this potent greenhouse gas to the atmosphere. Nitrite-, nitrate-, and sulfate-dependent methane oxidation is well-documented, but AOM coupled to the reduction of oxidized metals has so far been demonstrated only in environmental samples. Here, using a freshwater enrichment culture, we show that archaea of the order Methanosarcinales, related to “Candidatus Methanoperedens nitroreducens,” couple the reduction of environmentally relevant forms of Fe^(3+) and Mn^(4+) to the oxidation of methane. We obtained an enrichment culture of these archaea under anaerobic, nitrate-reducing conditions with a continuous supply of methane. Via batch incubations using [^(13)C]methane, we demonstrated that soluble ferric iron (Fe^(3+), as Fe-citrate) and nanoparticulate forms of Fe^(3+) and Mn^(4+) supported methane-oxidizing activity. CO_2 and ferrous iron (Fe^(2+)) were produced in stoichiometric amounts. Our study connects the previous finding of iron-dependent AOM to microorganisms detected in numerous habitats worldwide. Consequently, it enables a better understanding of the interaction between the biogeochemical cycles of iron and methane

    Novel genome polymorphisms in BCG vaccine strains and impact on efficacy

    Get PDF
    Bacille Calmette-Guérin (BCG) is an attenuated strain of Mycobacterium bovis currently used as a vaccine against tuberculosis. Global distribution and propagation of BCG has contributed to the in vitro evolution of the vaccine strain and is thought to partially account for the different outcomes of BCG vaccine trials. Previous efforts by several molecular techniques effectively identified large sequence polymorphisms among BCG daughter strains, but lacked the resolution to identify smaller changes. In this study, we have used a NimbleGen tiling array for whole genome comparison of 13 BCG strains. Using this approach, in tandem with DNA resequencing, we have identified six novel large sequence polymorphisms including four deletions and two duplications in specific BCG strains. Moreover, we have uncovered various polymorphisms in the phoP-phoR locus. Importantly, these polymorphisms affect genes encoding established virulence factors including cell wall complex lipids, ESX secretion systems, and the PhoP-PhoR two-component system. Our study demonstrates that major virulence factors are different among BCG strains, which provide molecular mechanisms for important vaccine phenotypes including adverse effect profile, tuberculin reactivity and protective efficacy. These findings have important implications for the development of a new generation of vaccines

    A highly redundant BAC library of Atlantic salmon (Salmo salar): an important tool for salmon projects

    Get PDF
    BACKGROUND: As farming of Atlantic salmon is growing as an aquaculture enterprise, the need to identify the genomic mechanisms for specific traits is becoming more important in breeding and management of the animal. Traits of importance might be related to growth, disease resistance, food conversion efficiency, color or taste. To identify genomic regions responsible for specific traits, genomic large insert libraries have previously proven to be of crucial importance. These large insert libraries can be screened using gene or genetic markers in order to identify and map regions of interest. Furthermore, large-scale mapping can utilize highly redundant libraries in genome projects, and hence provide valuable data on the genome structure. RESULTS: Here we report the construction and characterization of a highly redundant bacterial artificial chromosome (BAC) library constructed from a Norwegian aquaculture strain male of Atlantic salmon (Salmo salar). The library consists of a total number of 305 557 clones, in which approximately 299 000 are recombinants. The average insert size of the library is 188 kbp, representing 18-fold genome coverage. High-density filters each consisting of 18 432 clones spotted in duplicates have been produced for hybridization screening, and are publicly available [1]. To characterize the library, 15 expressed sequence tags (ESTs) derived overgos and 12 oligo sequences derived from microsatellite markers were used in hybridization screening of the complete BAC library. Secondary hybridizations with individual probes were performed for the clones detected. The BACs positive for the EST probes were fingerprinted and mapped into contigs, yielding an average of 3 contigs for each probe. Clones identified using genomic probes were PCR verified using microsatellite specific primers. CONCLUSION: Identification of genes and genomic regions of interest is greatly aided by the availability of the CHORI-214 Atlantic salmon BAC library. We have demonstrated the library's ability to identify specific genes and genetic markers using hybridization, PCR and fingerprinting experiments. In addition, multiple fingerprinting contigs indicated a pseudo-tetraploidity of the Atlantic salmon genome. The highly redundant CHORI-214 BAC library is expected to be an important resource for mapping and sequencing of the Atlantic salmon genome

    A Highly Redundant BAC Library of Atlantic salmon (Salmo salar): An Important Tool for Salmon Projects

    Get PDF
    Background: As farming of Atlantic salmon is growing as an aquaculture enterprise, the need to identify thegenomic mechanisms for specific traits is becoming more important in breeding and management of the animal.Traits of importance might be related to growth, disease resistance, food conversion efficiency, color or taste.To identify genomic regions responsible for specific traits, genomic large insert libraries have previously provento be of crucial importance. These large insert libraries can be screened using gene or genetic markers in orderto identify and map regions of interest. Furthermore, large-scale mapping can utilize highly redundant libraries ingenome projects, and hence provide valuable data on the genome structure.Results: Here we report the construction and characterization of a highly redundant bacterial artificialchromosome (BAC) library constructed from a Norwegian aquaculture strain male of Atlantic salmon (Salmosalar). The library consists of a total number of 305 557 clones, in which approximately 299 000 are recombinants.The average insert size of the library is 188 kbp, representing 18-fold genome coverage. High-density filters eachconsisting of 18 432 clones spotted in duplicates have been produced for hybridization screening, and are publiclyavailable [1]. To characterize the library, 15 expressed sequence tags (ESTs) derived overgos and 12 oligosequences derived from microsatellite markers were used in hybridization screening of the complete BAC library.Secondary hybridizations with individual probes were performed for the clones detected. The BACs positive forthe EST probes were fingerprinted and mapped into contigs, yielding an average of 3 contigs for each probe.Clones identified using genomic probes were PCR verified using microsatellite specific primers.Conclusion: Identification of genes and genomic regions of interest is greatly aided by the availability of theCHORI-214 Atlantic salmon BAC library. We have demonstrated the library\u27s ability to identify specific genes andgenetic markers using hybridization, PCR and fingerprinting experiments. In addition, multiple fingerprintingcontigs indicated a pseudo-tetraploidity of the Atlantic salmon genome. The highly redundant CHORI-214 BAClibrary is expected to be an important resource for mapping and sequencing of the Atlantic salmon genome

    Identification of a tripartite basal promoter which regulates human terminal deoxynucleotidyl transferase gene expression.

    Get PDF
    In order to locate the promoter region of the human terminal deoxynucleotidyl transferase gene, serially truncated segments of the 5'-flanking region of the gene were cloned into a chloramphenicol acetyltransferase reporter vector. Transient transfection analyses of the terminal transferase-reporter gene constructs identified the basal promoter region within -34 to +40 base pairs relative to the transcription start site. Three promoter elements were defined in this region. The primary element is within 34 base pairs upstream of the transcription start site. The CAP site is 62 base pairs upstream of the translation start site. The secondary element involves sequences around the transcription start site. The third is located 25 base pairs downstream from the initiation site (+25 to +40). This tripartite basal promoter was not tissue specific; similar patterns of promoter activity were observed in terminal transferase expressing and non-expressing cells. Transfection analyses also indicated the presence of negative regulatory elements upstream of the basal promoter region, and these elements were preferentially active in cells expressing terminal transferase

    Diabetes increases mortality after myocardial infarction by oxidizing CaMKII

    Get PDF
    Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca(2+)/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction
    • …
    corecore