7,046 research outputs found
Introduction and Expression of a Rabbit β-globin Gene in Mouse Fibroblasts
The cloned chromosomal rabbit ß-globin gene has been introduced into mouse fibroblasts by DNA-mediated gene transfer (transformation). In this report, we examine the expression of the rabbit gene in six independent transformants that contain from 1 to 20 copies of the cloned globin gene. Rabbit globin transcripts were detected in two of these transformants at steady-state concentrations of 5 and 2 copies per cell. The globin transcripts from one cell line are polyadenylylated and migrate as 9S RNA on methylmercury gels. These transcripts reflect correct processing of the two intervening sequences but lack 48 ± 5 nucleotides present at the 5' terminus of rabbit erythrocyte globin mRNA
Simple de Sitter Solutions
We present a framework for de Sitter model building in type IIA string
theory, illustrated with specific examples. We find metastable dS minima of the
potential for moduli obtained from a compactification on a product of two Nil
three-manifolds (which have negative scalar curvature) combined with
orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete
quantum number is taken large, the curvature, field strengths, inverse volume,
and four dimensional string coupling become parametrically small, and the de
Sitter Hubble scale can be tuned parametrically smaller than the scales of the
moduli, KK, and winding mode masses. A subtle point in the construction is that
although the curvature remains consistently weak, the circle fibers of the
nilmanifolds become very small in this limit (though this is avoided in
illustrative solutions at modest values of the parameters). In the simplest
version of the construction, the heaviest moduli masses are parametrically of
the same order as the lightest KK and winding masses. However, we provide a
method for separating these marginally overlapping scales, and more generally
the underlying supersymmetry of the model protects against large corrections to
the low-energy moduli potential.Comment: 37 pages, harvmac big, 4 figures. v3: small correction
Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment
We have studied the changes in the ferromagnetic behavior of graphite powder
and graphite flakes after treatment with diluted sulphuric acid. We show that
this kind of acid treatment enhances substantially the ferromagnetic
magnetization of virgin graphite micrometer size powder as well as in graphite
flakes. The anisotropic magnetoresistance (AMR) amplitude at 300 K measured in
a micrometer size thin graphite flake after acid treatment reaches values
comparable to polycrystalline cobalt.Comment: 3.2 pages, 4 figure
Inaccessible Singularities in Toral Cosmology
The familiar Bang/Crunch singularities of classical cosmology have recently
been augmented by new varieties: rips, sudden singularities, and so on. These
tend to be associated with final states. Here we consider an alternative
possibility for the initial state: a singularity which has the novel property
of being inaccessible to physically well-defined probes. These singularities
arise naturally in cosmologies with toral spatial sections.Comment: 10 pages, version to appear in Classical and Quantum Gravit
The HIBEAM/NNBAR Calorimeter Prototype
The HIBEAM/NNBAR experiment is a free-neutron search for
sterile and oscillations planned to be installed at
the European Spallation Source under construction in Lund, Sweden. A key
component in the experiment is the detector to identify
annihilation events, which will produce on average four pions with a final
state invariant mass of two nucleons, around GeV. The beamline and
experiment are shielded from magnetic fields which would suppress transitions, thus no momentum measurement will be
possible. Additionally, calorimetry for particles with kinetic energies below
MeV is challenging, as traditional sampling calorimeters used in HEP
would suffer from poor shower statistics. A design study is underway to use a
novel approach of a hadronic range measurement in multiple plastic scintillator
layers, followed by EM calorimetery with lead glass. A prototype calorimeter
system is being built, and will eventually be installed at an ESS test beam
line for \textit{in situ} neutron background studies.Comment: Contribution to the International Conference on Technology and
Instrumentation in Particle Physics (TIPP2021
Local Eigenvalue Density for General MANOVA Matrices
We consider random n\times n matrices of the form
(XX*+YY*)^{-1/2}YY*(XX*+YY*)^{-1/2}, where X and Y have independent entries
with zero mean and variance one. These matrices are the natural generalization
of the Gaussian case, which are known as MANOVA matrices and which have joint
eigenvalue density given by the third classical ensemble, the Jacobi ensemble.
We show that, away from the spectral edge, the eigenvalue density converges to
the limiting density of the Jacobi ensemble even on the shortest possible
scales of order 1/n (up to \log n factors). This result is the analogue of the
local Wigner semicircle law and the local Marchenko-Pastur law for general
MANOVA matrices.Comment: Several small changes made to the tex
AdS Bubbles, Entropy and Closed String Tachyons
We study the conjectured connection between AdS bubbles (AdS solitons) and
closed string tachyon condensations. We confirm that the entanglement entropy,
which measures the degree of freedom, decreases under the tachyon condensation.
The entropies in supergravity and free Yang-Mills agree with each other
remarkably. Next we consider the tachyon condensation on the AdS twisted circle
and argue that its endpoint is given by the twisted AdS bubble, defined by the
double Wick rotation of rotating black 3-brane solutions. We calculated the
Casimir energy and entropy and checked the agreements between the gauge and
gravity results. Finally we show an infinite boost of a null linear dilaton
theory with a tachyon wall (or bubble), leads to a solvable time-dependent
background with a bulk tachyon condensation. This is the simplest example of
spacetimes with null boundaries in string theory.Comment: 45 pages, 6 figures, harvmac, eq.(2.16) corrected, references adde
Loyalty Programs in the Sharing Economy: Optimality and Competition
Loyalty programs are important tools for sharing platforms seeking to grow supply. Online sharing platforms use loyalty programs to heavily subsidize resource providers, encouraging participation and boosting supply. As the sharing economy has evolved and competition has increased, the design of loyalty programs has begun to play a crucial role in the pursuit of maximal revenue. In this paper, we first characterize the optimal loyalty program for a platform with homogeneous users. We then show that optimal revenue in a heterogeneous market can be achieved by a class of multi-threshold loyalty program (MTLP) which admits a simple implementation-friendly structure. We also study the performance of loyalty programs in a setting with two competing sharing platforms, showing that the degree of heterogeneity is a crucial factor for both loyalty programs and pricing strategies. Our results show that sophisticated loyalty programs that reward suppliers via stepwise linear functions outperform simple sign-up bonuses, which give them a one time reward for participating
- …