62 research outputs found

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Stagnation of a 'Miracle': Botswana’s Governance Record Revisited

    Full text link

    Blink-related delta oscillations in the resting-state EEG: A wavelet analysis

    No full text
    Over the past decades, many studies have linked the variations in frequency of spontaneous blinking with certain aspects of information processing and in particular with attention and working memory functions. On the other hand, according to the theory postulated by Crick and Koch, the actual function of primary consciousness is based on the reciprocal interaction between attention and working memory in the automatic and serial mode. The purpose of this study was to investigate for electrophysiological correlates compatible with the cognitive nature of spontaneous blinking, by using the EEG recordings obtained in a group of seven healthy volunteers while they rested quietly though awake, with their eyes open, but not actively engaged in attention-demanding goal-directed behaviours. The global wavelet analysis - at total of 189 three-second EEG epochs time-locked to the blink - revealed an increase in the delta band signal corresponding to the blink. In particular, a reconstruction of the EEG signal by means of inverse-wavelet transform (IWT) showed a blink-related P300-like wave at mid-parietal site. We assumed this phenomenon to represent an electrophysiological sign of the automatic processing of contextual environmental information. This might play a role in maintaining perceptive awareness of the environment at a low level of processing, while the subject is not engaged in attention-demanding tasks but rather introspectively oriented mental activities or free association(s). (C) 2008 Elsevier Ireland Ltd. All rights reserved

    Reciprocal dynamics of EEG alpha and delta oscillations during spontaneous blinking at rest: A survey on a default mode-based visuo-spatial awareness

    No full text
    By means of a narrowband wavelet analysis (0.5-6Hz), EEG delta event-related oscillations (EROs), both time- and phase-locked to spontaneous blinking (delta blink-related oscillations or delta BROs), have recently been demonstrated. On the basis of their spatiotemporal characteristics, delta BROs have been proposed as being involved in an automatic mechanism of maintaining awareness in a visuo-spatial context. The aim of the present study was: a) to investigate whether spontaneous blinking was also able to modulate alpha oscillations and, if so, b) whether this modulation was consistent with delta BROs, in order c) to acquire additional information for a better understanding of the cognitive phenomena underlying blinking. Using a broadband (0.5-100 Hz) continuous wavelet transform (CWT), we analysed a total of 189 three-second EEG epochs time-locked to the blinks of seven healthy volunteers. The EEG signals were submitted both to band-pass filtered cross-trial averaging (to obtain frequency-specific BROs) and to alpha event-related synchronization/desynchronization (i.e., blink-related synchronization/desynchronization, BRS/BRD). The alpha oscillations showed: a) an early BRS; b) a BRD in the same temporal window of the delta BROs and, c) a late BRS. We postulate that: a) the early BRS represents the short-term memory maintenance of the last visually perceived trace of the surroundings; b) the alpha BRD is associated with the comparison between the newly perceived image of the environment and its mnestic representation, and, lastly, c) the late BRS is connected with neuronal recovery phenomena

    Reciprocal dynamics of EEG alpha and delta oscillations during spontaneous blinking at rest: a survey on a default mode-based visuo-spatial awareness.

    No full text
    By means of a narrowband wavelet analysis (0.5-6Hz), EEG delta event-related oscillations (EROs), both time- and phase-locked to spontaneous blinking (delta blink-related oscillations or delta BROs), have recently been demonstrated. On the basis of their spatiotemporal characteristics, delta BROs have been proposed as being involved in an automatic mechanism of maintaining awareness in a visuo-spatial context. The aim of the present study was: a) to investigate whether spontaneous blinking was also able to modulate alpha oscillations and, if so, b) whether this modulation was consistent with delta BROs, in order c) to acquire additional information for a better understanding of the cognitive phenomena underlying blinking. Using a broadband (0.5-100 Hz) continuous wavelet transform (CWT), we analysed a total of 189 three-second EEG epochs time-locked to the blinks of seven healthy volunteers. The EEG signals were submitted both to band-pass filtered cross-trial averaging (to obtain frequency-specific BROs) and to alpha event-related synchronization/desynchronization (i.e., blink-related synchronization/desynchronization, BRS/BRD). The alpha oscillations showed: a) an early BRS; b) a BRD in the same temporal window of the delta BROs and, c) a late BRS. We postulate that: a) the early BRS represents the short-term memory maintenance of the last visually perceived trace of the surroundings; b) the alpha BRD is associated with the comparison between the newly perceived image of the environment and its mnestic representation, and, lastly, c) the late BRS is connected with neuronal recovery phenomena
    • …
    corecore