10,860 research outputs found
Relating Gribov-Zwanziger theory to effective Yang-Mills theory
We consider the Gribov-Zwanziger (GZ) theory with appropriate horizon term
which exhibits the nilpotent BRST invariance. This infinitesimal BRST
transformation has been generalized by allowing the parameter to be finite and
field dependent (FFBRST). By constructing appropriate finite field dependent
parameter we show that the generating functional of GZ theory with horizon term
is related to that of Yang-Mills (YM) theory through FFBRST transformation.Comment: 14 pages, No figure, to appear in Europhysics Lette
Giant magnetothermal conductivity and magnetostriction effect in charge ordered NdNaMnO compound
We present results on resistivity (), magnetization (), thermal
conductivity (), magnetostriction () and
specific heat () of charge-orbital ordered antiferromagnetic
NdNaMnO compound. Magnetic field-induced
antiferromagnetic/charge-orbital ordered insulating to ferromagnetic metallic
transition leads to giant magnetothermal conductivity and magnetostriction
effect. The low-temperature irreversibility behavior in , ,
and due to field cycling together with striking
similarity among the field and temperature dependence of these parameters
manifest the presence of strong and complex spin-charge-lattice coupling in
this compound. The giant magnetothermal conductivity is attributed mainly to
the suppression of phonon scattering due to the destabilization of spin
fluctuations and static/dynamic Jahn-Teller distortion by the application of
magnetic field.Comment: 4 Pages, 4 Figure
Statistical Mechanics of DNA Rupture: Theory and Simulations
We study the effects of the shear force on the rupture mechanism on a double
stranded DNA. Motivated by recent experiments, we perform the atomistic
simulations with explicit solvent to obtain the distributions of extension in
hydrogen and covalent bonds below the rupture force. We obtain a significant
difference between the atomistic simulations and the existing results in the
iterature based on the coarse-grained models (theory and simulations). We
discuss the possible reasons and improve the coarse-grained model by
incorporating the consequences of semi-microscopic details of the nucleotides
in its description. The distributions obtained by the modified model
(simulations and theoretical) are qualitatively similar to the one obtained
using atomistic simulations.Comment: 18 pages, 9 figures. Accepted in J. Chem. Phys. (2013). arXiv admin
note: text overlap with arXiv:1104.305
UV Exposed Optical Fibers with Frequency Domain Reflectometry for Device Tracking in Intra-Arterial Procedures
Shape tracking of medical devices using strain sensing properties in optical
fibers has seen increased attention in recent years. In this paper, we propose
a novel guidance system for intra-arterial procedures using a distributed
strain sensing device based on optical frequency domain reflectometry (OFDR) to
track the shape of a catheter. Tracking enhancement is provided by exposing a
fiber triplet to a focused ultraviolet beam, producing high scattering
properties. Contrary to typical quasi-distributed strain sensors, we propose a
truly distributed strain sensing approach, which allows to reconstruct a fiber
triplet in real-time. A 3D roadmap of the hepatic anatomy integrated with a 4D
MR imaging sequence allows to navigate the catheter within the
pre-interventional anatomy, and map the blood flow velocities in the arterial
tree. We employed Riemannian anisotropic heat kernels to map the sensed data to
the pre-interventional model. Experiments in synthetic phantoms and an in vivo
model are presented. Results show that the tracking accuracy is suitable for
interventional tracking applications, with a mean 3D shape reconstruction
errors of 1.6 +/- 0.3 mm. This study demonstrates the promising potential of
MR-compatible UV-exposed OFDR optical fibers for non-ionizing device guidance
in intra-arterial procedures
Bezvakuumski globalni monopol u Einstein-Cartanovoj teoriji
We analyze the gravitational field of vacuumless global monopole in the context of Einstein-Cartan theory under the weak field assumption of the field equations. It has been shown that global monopole exerts attractive gravitational force on a test particle. This effect is absent in general relativity.Analiziramo gravitacijsko polje bezvakuumskog globalnog monopola u okviru Einstein–Cartanove teorije, uzevši pretpostavku slabog polja u jednadžbama polja. Pokazuje se da globalni monopol proizvodi privlačnu gravitacijsku silu na ispitnu česticu. Takvog učinka nema u općoj teoriji relativnosti
- …