122 research outputs found
Recommended from our members
An analysis of creep crack growth of interface cracks in layered/graded materials
In this study, the growth behavior of interface cracks in bimaterials and in layered materials resulting from the creep cavitation was studied. The growth model includes the effects of material deposition resulting from the growth of creep cavities on the crack tip stress fields. The results indicate that in layered materials under identical applied loading, the location of the interface crack strongly influence the amplitude of the stress field at steady-state. Due to large variation in the distribution of the stresses ahead of the interface cracks at creep regime, depending upon the crack location, the creep crack growth rates will be significantly different from each other under identical loading for a given layered material
Recommended from our members
Variation of stresses ahead of the internal cracks in ReNi{sub 5} powders during hydrogen charging and discharging cycles
In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles where Re denotes the rare earths La, Ce, and Misch-metals during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--30% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles
Thermodynamics of the Spin Luttinger-Liquid in a Model Ladder Material
The phase diagram in temperature and magnetic field of the metal-organic,
two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the
specific heat and the magnetocaloric effect. We demonstrate the presence of an
extended spin Luttinger-liquid phase between two field-induced quantum critical
points and over a broad range of temperature. Based on an ideal spin-ladder
Hamiltonian, comprehensive numerical modelling of the ladder specific heat
yields excellent quantitative agreement with the experimental data across the
complete phase diagram.Comment: 4 pages, 4 figures, updated refs and minor changes to the text,
version accepted for publication in Phys. Rev. Let
Bound states and field-polarized Haldane modes in a quantum spin ladder
The challenge of one-dimensional systems is to understand their physics
beyond the level of known elementary excitations. By high-resolution neutron
spectroscopy in a quantum spin ladder material, we probe the leading
multiparticle excitation by characterizing the two-magnon bound state at zero
field. By applying high magnetic fields, we create and select the singlet
(longitudinal) and triplet (transverse) excitations of the fully spin-polarized
ladder, which have not been observed previously and are close analogs of the
modes anticipated in a polarized Haldane chain. Theoretical modelling of the
dynamical response demonstrates our complete quantitative understanding of
these states.Comment: 6 pages, 3 figures plus supplementary material 7 pages 5 figure
Hydrogen charging in nickel and iron and its effect on their magnetic properties
The current study was undertaken to explore the possibility of detecting hydrogen cavitation in magnetic materials through magnetic propertymeasurements. It is known that dissolved hydrogen in a material causes microvoids. These voids may affect the structureâsensitive magnetic properties such as coercivity and remanence. In this study, hydrogen was introduced into nickel and iron by two processes, namely thermal charging and cathodic charging. The effect on the magnetic properties was measured. In addition, the variation of the magnetic properties with porosity was studied
A model for hysteretic magnetic properties under the application of noncoaxial stress and field
Although descriptions of the effect of stress on spontaneous magnetization within a single domain already exist, there remains no adequate mathematical model for the effects of noncoaxial magnetic field and stress on bulk magnetization in a multidomained specimen. This article addresses the problem and provides a phenomenological theory that applies to the case of bulk isotropic materials. The magnetomechanical hysteresis model of Sablik and Jiles is thus extended to treat magnetic properties in the case of noncoaxial stress and magnetic field in an isotropic, polycrystalline medium. In the modeling, noncollinearity between magnetization and magnetic field is taken into account. The effect of rollâaxis anisotropy is also considered. Both magnetic and magnetostrictive hysteresis are describable by the extended model. Emphasis in this article is on describing properties like coercivity, remanence,hysteresis loss, maximum flux density, and maximum differential permeability as a function of stress for various angular orientations between field and stress axis. The model predictions are compared with experimental results
Evaluation of fatigue damage in steel structural components by magnetoelastic Barkhausen signal analysis
This paper is concerned with using a magnetic technique for the evaluation of fatigue damage in steel structural components. It is shown that Barkhausen effect measurements can be used to indicate impending failure due to fatigue under certain conditions. The Barkhausen signal amplitude is known to be highly sensitive to changes in density and distribution of dislocations in materials. The sensitivity of Barkhausen signal amplitude to fatigue damage has been studied in the lowâcycle fatigue regime using smooth tensile specimens of a medium strength steel. The Barkhausen measurements were taken at depths of penetration of 0.02, 0.07, and 0.2 mm. It was found that changes in magnetic properties are sensitive to microstructural changes taking place at the surface of the material throughout the fatigue life. The changes in the Barkhausen signals have been attributed to distribution of dislocations in stage I and stage II of fatigue life and the formation of a macrocrack in the final stage of fatigue
- âŠ