1,187 research outputs found

    A general model for collaboration networks

    Full text link
    In this paper, we propose a general model for collaboration networks. Depending on a single free parameter "{\bf preferential exponent}", this model interpolates between networks with a scale-free and an exponential degree distribution. The degree distribution in the present networks can be roughly classified into four patterns, all of which are observed in empirical data. And this model exhibits small-world effect, which means the corresponding networks are of very short average distance and highly large clustering coefficient. More interesting, we find a peak distribution of act-size from empirical data which has not been emphasized before of some collaboration networks. Our model can produce the peak act-size distribution naturally that agrees with the empirical data well.Comment: 10 pages, 10 figure

    Iron metabolism at the interface between host and pathogen: From nutritional immunity to antibacterial development

    Get PDF
    Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery

    Iron metabolism at the interface between host and pathogen: From nutritional immunity to antibacterial development

    Get PDF
    Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery

    Subtracting Compact Binary Foregrounds to Search for Subdominant Gravitational-Wave Backgrounds in Next-Generation Ground-Based Observatories

    Full text link
    Stochastic gravitational-wave backgrounds (SGWBs) derive from the superposition of numerous individually unresolved gravitational-wave (GW) signals. Detecting SGWBs provides us with invaluable information about astrophysics, cosmology, and fundamental physics. In this paper, we study SGWBs from binary black-hole (BBH) and binary neutron-star (BNS) coalescences in a network of next-generation ground-based GW observatories (Cosmic Explorer and Einstein Telescope) and determine how well they can be measured; this then limits how well we can observe other subdominant astrophysical and cosmological SGWBs. We simulate all-Universe populations of BBHs and BNSs and calculate the corresponding SGWBs, which consist of a superposition of (i) undetected signals, and (ii) the residual background from imperfect removal of resolved sources. The sum of the two components sets the sensitivity for observing other SGWBs. Our results show that, even with next-generation observatories, the residual background is large and limits the sensitivity to other SGWBs. The main contributions to the residual background arise from uncertainties in inferring the coalescence phase and luminosity distance of the detected signals. Alternative approaches to signal subtraction would need to be explored to minimize the BBH and BNS foreground in order to observe SGWBs from other subdominant astrophysical and cosmological sources.Comment: 19 pages, 10 figures, matches the published versio

    Experimental identification and validation of models in micro and macro plasticity

    Get PDF
    For micro-macro approaches to finite plasticity, one needs experimental results on both scales, the engineering scale (macro scale) and the crystal scale (micro scale). Since we know that a monocrystal behaves different from a crystallite embedded in a polycrystal, one is also interested in data obtained on the micro scale of a polycrystal. Such data is needed not only for the identification of the material parameters like hardening variables, but also for the validation of these models. In this paper, experiments on both scales and, in parallel, FEM-simulations are presented, in order to compare the results of both approaches. The specimens stem from a rolled sheet of the deep-drawing steel DC04. On the micro scale indenter tests have been performed and the orientation changes in the volume below the indent have been measured using micron-resolution 3D x-ray microscopy (Larson et al., 2004, 2008). On the macro scale the usual tension tests and additional shear tests in different directions (Bouvier etal.,2006) have been performed. In corresponding simulations, the micro-macro transition is performed by a full constrained Taylor-model and, in order to overcome the drawbacks of the Taylor-model, the RVE technique has been applied

    A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2017. Supplementary information accompanies this paper at doi:10.1038/s41598-017-01971-2.The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.Peer reviewe

    The relationship between contact pressure, insert thickness, and mild wear in total knee replacements,

    Get PDF
    Abstract: Mild wear of ultra-high molecular weight polyethylene tibial inserts continues to affect the longevity of total knee replacements (TKRs). Using static finite element and elasticity analyses, previous studies have hypothesized that polyethylene wear can be reduced by using a thicker tibial insert to decrease contact pressures. To date, no study has taken this hypothesis to the next step by performing dynamic analyses under in vivo functional conditions to quantify the relationship between contact pressures, insert thickness, and mild wear. This study utilizes multibody dynamic simulations incorporating elastic contact to perform such analyses. In vivo fluoroscopic gait data from two patients with different implant designs were used to drive dynamic contact simulations. The first design was coronally flat-on-flat while the second was coronally curved-on-curved. Variations in minimum plastic thickness (6, 8, 10, 12, and 14 mm) and applied load profile (corresponding to body masses of 50, 62.5, 75, 87.5. and 100 kg) were used to modify the contact pressures in each of 25 simulations performed with each implant design. Mild wear following five million cycles of gait was calculated from the contact pressure and slip velocity time histories of elements on the tibial insert surfaces. The maximum values of peak and average contact pressure during the gait cycle were found to be poor predictors of wear depth. In contrast, contact pressures were good predictors of wear volume when the pressures were varied by changing the applied load profile. However, when the applied load profile was fixed and the contact pressures varied by changing the insert thickness, no changes in wear volume were predicted. Decreases in contact pressure due to a thicker insert were offset by increases in contact area subjected to sliding in the wear calculations. These findings suggest that use of a thicker tibial insert may not necessarily lead to decreased mild wear in total knee replacements and that further investigation of this issue is warranted

    Hit from both sides: tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals during the MILAGRO field campaign

    Get PDF
    Large sulfur dioxide plumes were measured in the Mexico City Metropolitan Area (MCMA) during the MILAGRO field campaign. This paper seeks to identify the sources of these plumes and the meteorological processes that affect their dispersion in a complex mountain basin. Surface measurements of SO2 and winds are analysed in combination with radar wind profiler data to identify transport directions. Satellite retrievals of vertical SO2 columns from the Ozone Monitoring Instrument (OMI) reveal the dispersion from both the Tula industrial complex and the Popocatepetl volcano. Oversampling the OMI swath data to a fine grid (3 by 3 km) and averaging over the field campaign yielded a high resolution image of the average plume transport. Numerical simulations are used to identify possible transport scenarios. The analysis suggests that both Tula and Popocatepetl contribute to SO2 levels in the MCMA, sometimes on the same day due to strong vertical wind shear. During the field campaign, model estimates suggest that the volcano accounts for about one tenth of the SO2 in the MCMA, with a roughly equal split for the rest between urban sources and the Tula industrial complex. The evaluation of simulations with known sources and pollutants suggests that the combination of observations and meteorological models will be useful in identifying sources and transport processes of other plumes observed during MILAGRO.National Science Foundation (U.S.) (award ATM-0810931)National Science Foundation (U.S.) (ATM-0810950)Molina Center for Energy and the Environmen
    corecore