1,634 research outputs found
Electron acceleration by cascading reconnection in the solar corona I Magnetic gradient and curvature effects
Aims: We investigate the electron acceleration in convective electric fields
of cascading magnetic reconnection in a flaring solar corona and show the
resulting hard X-ray (HXR) radiation spectra caused by Bremsstrahlung for the
coronal source. Methods: We perform test particle calculation of electron
motions in the framework of a guiding center approximation. The electromagnetic
fields and their derivatives along electron trajectories are obtained by
linearly interpolating the results of high-resolution adaptive mesh refinement
(AMR) MHD simulations of cascading magnetic reconnection. Hard X-ray (HXR)
spectra are calculated using an optically thin Bremsstrahlung model. Results:
Magnetic gradients and curvatures in cascading reconnection current sheet
accelerate electrons: trapped in magnetic islands, precipitating to the
chromosphere and ejected into the interplanetary space. The final location of
an electron is determined by its initial position, pitch angle and velocity.
These initial conditions also influence electron acceleration efficiency. Most
of electrons have enhanced perpendicular energy. Trapped electrons are
considered to cause the observed bright spots along coronal mass ejection
CME-trailing current sheets as well as the flare loop-top HXR emissions.Comment: submitted to A&
Why of (CaFeAs)PtAs is twice as high as (CaFePtAs)PtAs
Recently discovered (CaFePtAs)PtAs and
(CaFeAs)PtAs superconductors are very similar materials
having the same elemental composition and structurally similar superconducting
FeAs slabs. Yet the maximal critical temperature achieved by changing Pt
concentration is approximately twice higher in the latter. Using angle-resolved
photoemission spectroscopy(ARPES) we compare the electronic structure of their
optimally doped compounds and find drastic differences. Our results highlight
the sensitivity of critical temperature to the details of fermiology and point
to the decisive role of band-edge singularities in the mechanism of high-
superconductivity
Phonon Anomalies, Orbital-Ordering and Electronic Raman Scattering in iron-pnictide Ca(Fe0.97Co0.03)2As2: Temperature-dependent Raman Study
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)2As2 in a
wide spectral range of 120-5200 cm-1 from 5K to 300K, covering the tetragonal
to orthorhombic structural transition as well as magnetic transition at Tsm ~
160K. The mode frequencies of two first-order Raman modes B1g and Eg, both
involving displacement of Fe atoms, show sharp increase below Tsm.
Concomitantly, the linewidths of all the first-order Raman modes show anomalous
broadening below Tsm, attributed to strong spin-phonon coupling. The high
frequency modes observed between 400-1200 cm-1 are attributed to the electronic
Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The
splitting between xz and yz d-orbital levels is shown to be ~ 25 meV which
increases as temperature decreases below Tsm. A broad Raman band observed at ~
3200 cm-1 is assigned to two-magnon excitation of the itinerant Fe 3d
antiferromagnet.Comment: Accepted for Publication in JPC
Local magnetic anisotropy in BaFeAs: a polarized inelastic neutron scattering study
The anisotropy of the magnetic excitations in BaFeAs was studied by
polarized inelastic neutron scattering which allows one to separate the
components of the magnetic response. Despite the in-plane orientation of the
static ordered moment we find the in-plane polarized magnons to exhibit a
larger gap than the out-of-plane polarized ones indicating very strong
single-ion anisotropy within the layers. It costs more energy to rotate a spin
within the orthorhombic {\it a-b} plane than rotating it perpendicular to the
FeAs layers.Comment: 4 pages, 4 figure
- …