31 research outputs found

    Preimaginal Stages of the Emerald Ash Borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae): An Invasive Pest on Ash Trees (Fraxinus)

    Get PDF
    This study provides the most detailed description of the immature stages of Agrilus planipennis Fairmaire to date and illustrates suites of larval characters useful in distinguishing among Agrilus Curtis species and instars. Immature stages of eight species of Agrilus were examined and imaged using light and scanning electron microscopy. For A. planipennis all preimaginal stages (egg, instars I-IV, prepupa and pupa) were described. A combination of 14 character states were identified that serve to identify larvae of A. planipennis. Our results support the segregation of Agrilus larvae into two informal assemblages based on characters of the mouthparts, prothorax, and abdomen: the A. viridis and A. ater assemblages, with A. planipennis being more similar to the former. Additional evidence is provided in favor of excluding A. planipennis from the subgenus Uragrilus

    A Supplement to the Revision of the Anthaxia

    No full text

    New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish

    No full text
    Cellular motility is essential for microscopic parasites, it is used to reach the host, migrate through tissues, or evade host immune reactions. Many cells employ an evolutionary conserved motor protein– actin, to crawl or glide along a substrate. We describe the peculiar movement of Sphaerospora molnari, a myxozoan parasite with proliferating blood stages in its host, common carp. Myxozoa are highly adapted parasitic cnidarians alternately infecting vertebrates and invertebrates. S. molnari blood stages (SMBS) have developed a unique “dancing” behaviour, using the external membrane as a motility effector to rotate and move the cell. SMBS movement is exceptionally fast compared to other myxozoans, non-directional and constant. The movement is based on two cytoplasmic actins that are highly divergent from those of other metazoans. We produced a specific polyclonal actin antibody for the staining and immunolabelling of S. molnari’s microfilaments since we found that neither commercial antibodies nor phalloidin recognised the protein or microfilaments. We show the in situ localization of this actin in the parasite and discuss the importance of this motility for evasion from the cellular host immune response in vitro. This new type of motility holds key insights into the evolution of cellular motility and associated proteins.The study was jointly supported by the Hungarian Scientific Research Fund (OTKA grant No. K112301), European Commission (ParaFishControl, H2020 EU3.2. project reference 634429; ModBiolin, FP7-REGPOT, Project reference 316304), and the Czech Science Foundation (505/12/G112). AH received support from The Academy of Science of the Czech Republic Programme in Support of Perspective Human Resources.Peer reviewe
    corecore