60,174 research outputs found
WAVELET BASED NONLINEAR SEPARATION OF IMAGES
This work addresses a real-life problem corresponding
to the separation of the nonlinear mixture of images which
arises when we scan a paper document and the image from
the back page shows through.
The proposed solution consists of a non-iterative procedure
that is based on two simple observations: (1) the high
frequency content of images is sparse, and (2) the image
printed on each side of the paper appears more strongly in
the mixture acquired from that side than in the mixture acquired from the opposite side.
These ideas had already been used in the context of nonlinear denoising source separation (DSS). However, in that method the degree of separation achieved by applying these ideas was relatively weak, and the separation had to be improved by iterating within the DSS scheme. In this paper the application of these ideas is improved by changing the competition function and the wavelet transform that is used. These improvements allow us to achieve a good separation in one shot, without the need to integrate the process into an iterative DSS scheme. The resulting separation process is both nonlinear and non-local.
We present experimental results that show that the method
achieves a good separation quality
On a generalization of Valiron's inequality for k-hypermonogenic functions on upper half-space
We present some results on the asymptotic growth behavior of periodic k-hypermonogenic functions on upper half-space. A generalization of the classical Valiron inequality for this class of functions and some basic properties are discussed
Corrections to Newton's law of gravitation - application to hybrid Bloch brane
We present in this work, the calculations of corrections in the Newton's law
of gravitation due to Kaluza-Klein gravitons in five-dimensional warped thick
braneworld scenarios. We consider here a recently proposed model, namely, the
hybrid Bloch brane. This model couples two scalar fields to gravity and is
engendered from a domain wall-like defect. Also, two other models the so-called
asymmetric hybrid brane and compact brane are considered. As a matter of fact,
these models are obtained from deformations of the phi4 and sine-Gordon
topological defects. Then, we constructed the branes upon such defects, and the
corresponding corrections in Newton's law of gravitation are computed. In order
to attain the mass spectrum and its corresponding eigenfunctions which are the
essential quantities for computing the correction to the Newtonian potential,
we develop a suitable numerical technique.Comment: 7 pages, 3 figures, Proceedings of The XXVth International Conference
on Integrable Systems and Quantum symmetries (ISQS-25
- …
