211 research outputs found

    Development of high-gain gaseous photomultipliers for the visible spectral range

    Full text link
    We summarize the development of visible-sensitive gaseous photomultipliers, combining a semitransparent bi-alkali photocathode with a state-of-the-art cascaded electron multiplier. The latter has high photoelectron collection efficiency and a record ion blocking capability. We describe in details the system and methods of photocathode production and characterization, their coupling with the electron multiplier and the gaseous-photomultiplier operation and characterization in a continuous mode. We present results on the properties of laboratory-produced K2_2CsSb, Cs3_3Sb and Na2_2KSb photocathodes and report on their stability and QE in gas; K2_2CsSb photocathodes yielded QE values in Ar/CH4_4(95/5) above 30% at wavelengths of 360-400 nm. The novel gaseous photomultiplier yielded stable operation at gains of 105^5, in continuous operation mode, in 700 Torr of this gas; its sensitivity to single photons was demonstrated. Other properties are described. The successful detection of visible light with this gas-photomultiplier pave ways towards further development of large-area sealed imaging detectors, of flat geometry, insensitive to magnetic fields, which might have significant impact on light detection in numerous fields.Comment: 22 pages, 12 figures, for submission to JINS

    Can Doubly Strange Dibaryon Resonances be Discovered at RHIC?

    Full text link
    The baryon-baryon continuum invariant mass spectrum generated from relativistic nucleus + nucleus collision data may reveal the existence of doubly-strange dibaryons not stable against strong decay if they lie within a few MeV of threshold. Furthermore, since the dominant component of these states is a superposition of two color-octet clusters which can be produced intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced production of dibaryon resonances could be a signal of QGP formation. A total of eight, doubly-strange dibaryon states are considered for experimental search using the STAR detector (Solenoidal Tracker at RHIC) at the new Relativistic Heavy Ion Collider (RHIC). These states may decay to Lambda-Lambda and/or proton-Cascade-minus, depending on the resonance energy. STAR's large acceptance, precision tracking and vertex reconstruction capabilities, and large data volume capacity, make it an ideal instrument to use for such a search. Detector performance and analysis sensitivity are studied as a function of resonance production rate and width for one particular dibaryon which can directly strong decay to proton-Cascade-minus but not Lambda-Lambda. Results indicate that such resonances may be discovered using STAR if the resonance production rates are comparable to coalescence model predictions for dibaryon bound states.Comment: 28 pages, 5 figures, revised versio

    Non-planar ABJM Theory and Integrability

    Full text link
    Using an effective vertex method we explicitly derive the two-loop dilatation generator of ABJM theory in its SU(2)xSU(2) sector, including all non-planar corrections. Subsequently, we apply this generator to a series of finite length operators as well as to two different types of BMN operators. As in N=4 SYM, at the planar level the finite length operators are found to exhibit a degeneracy between certain pairs of operators with opposite parity - a degeneracy which can be attributed to the existence of an extra conserved charge and thus to the integrability of the planar theory. When non-planar corrections are taken into account the degeneracies between parity pairs disappear hinting the absence of higher conserved charges. The analysis of the BMN operators resembles that of N=4 SYM. Additional non-planar terms appear for BMN operators of finite length but once the strict BMN limit is taken these terms disappear.Comment: 1+26 pages, uses axodraw.sty. v2: typos fixed, references added. v3: more typos fixed, minor correction

    Perspectives on the use of transcriptomics to advance biofuels

    Get PDF
    As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.clos

    Evidence for a Mixed Mass Composition at the ‘ankle’ in the Cosmic-ray Spectrum

    Get PDF
    We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the ‘ankle’ at lg(E/eV) = 18.5–19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A \u3e 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoredas the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth

    Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory

    Get PDF
    Published 31 October 2016Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170  TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.A. Aab ... J. A. Bellido ... S. G. Blaess ... R.W. Clay ... M. J. Cooper ... B. R. Dawson ... T. D. Grubb ... T. A. Harrison ... G. C. Hill ... M. Malacari ... P. H. Nguyen ... S. J. Saffi ... J. Sorokin ... T. Sudholz ... P. van Bodegom ... et al. (Pierre Auger Collaboration

    Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory

    Get PDF
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30–80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy—corrected for geometrical effects—is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.A. Aab … J.A. Bellido … S.G. Blaess … R.W. Clay … M.J. Cooper … B.R. Dawson … T.D. Grubb … T.A. Harrison … G.C. Hill … M. Malacari … P.H. Nguyen … S.J. Saffi … J. Sorokin … P. van Bodegom ... et al. (Pierre Auger Collaboration

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec θ) max sensitive to the mass composition of cosmic rays above 3 × 10¹⁸ eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modeling that must be resolved before the mass composition can be inferred from (sec θ) max.A. Aab ... S. G. Blaess ... R.W. Clay ... M. J. Cooper ... B. R. Dawson ... T. D. Grubb ... T. A. Harrison ... G. C. Hill ... M. Malacari ... P. H. Nguyen ... S. J. Saffi ... J. Sorokin ... T. Sudholz ... P. van Bodegom ... et. al. (Pierre Auger Collaboration

    Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger observatory

    Get PDF
    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for “Earth-skimming” neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°–75° and 75°–90° as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E−2 spectrum in the energy range 1.0 × 1017 eV–2.5 × 1019 eV is E2ν dNν=dEν < 6.4 × 10−9 GeV cm−2 s−1 sr−1.A. Aab ... K. B. Barber ... J. A. Bellido ... S. G. Blaess ...R.W. Clay ... M. J. Cooper ... B. R. Dawson ... T. D. Grubb ... T. A. Harrison ... G. C. Hill ... P. H. Nguyen ... S. J. Saffi ... J. Sorokin ... P. van Bodegom ... et. al. (Pierre Auger Collaboration

    Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10(17.8) eV

    Get PDF
    K.B. Barber, J.A. Bellido, S. Blaess, R.W. Clay, M.J. Cooper, B.R. Dawson, T.D. Grubb, T.A. Harrison, G. C. Hill, M. Malacari, P. Nguyen, S.J. Saffi, J. Sorokin, P. van Bodegom are members of The Pierre Auger CollaborationWe report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8  eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.A. Aab ... K.B. Barber ... J.A. Bellido ... S. Blaess ... R.W. Clay ... M.J. Cooper ... B.R. Dawson ... T.D. Grubb ... T.A. Harrison ... G. C. Hill ... M. Malacari ... P. Nguyen ... S.J. Saffi ... J. Sorokin ... P. van Bodegom ... et al. ... (Pierre Auger Collaboration
    corecore