127 research outputs found

    In Emerging Adulthood, Perceived Stress is Linked to Poor Diet Quality

    Get PDF
    Click the PDF icon to download the abstrac

    Mechanics of cooling liquids by forced evaporation in bubbles

    Get PDF
    Injecting a non-dissolvable gas into a saturated liquid results in sub-cooling of the liquid due to forced evaporation into the bubble. Previous studies assumed the rate of evaporation of liquid into the bubble to be independent of the degree of sub-cooling. In our study we quantify the bubble growth by direct observation using high speed imaging and prove that this hypothesis is not true. A phenomenological model of the bubble growth as a function of the degree of sub-cooling is developed and we find excellent agreement between the measurements and theory. This bubble cooling process is employed in cooling a liquid. By identification of all heat flows, we can well describe the cool down curve using bubble cooling. Bubble cooling provides an alternative cooling method for liquids without the use of complicated cooling techniques

    Experimental and theoretical investigation of the Leidenfrost dynamics of solid carbon dioxide discs sublimating on a solid substrate

    Get PDF
    Volatile liquid droplets levitate on a cushion of their vapor when placed on a hot solid substrate. While extensive research has focused on investigating this phenomenon, commonly known as the Leidenfrost effect in the context of liquids, it may also occur for solids whose triple point pressure is above normal ambient conditions. The present study experimentally and theoretically investigates the Leidenfrost effect for a disc-shaped dry ice pellet placed on a temperature-controlled hot sapphire substrate. The spatial and temporal evolution of the vapor layer thickness below the pellet is measured for varying substrate temperatures using optical coherence tomography (OCT). Simultaneously, the shrinkage of the sublimating dry ice pellet is recorded using video cameras. It is shown that the bottom surface of the pellet is approximately flat within the surface roughness and the resolution of the experimental setup. Intriguingly, this study reveals that the vapor layer thickness below a Leidenfrost solid increases with time in contrast to the dynamics observed for a Leidenfrost liquid droplet/puddle. Additionally, a theoretical model based on the lubrication approximation is employed to estimate the vapor layer thickness and the temporal evolution of the pellet's geometry. The theoretical predictions generally agree well with the measurements throughout the majority of the pellet's lifespan, with deviations observed towards the end of its sublimation due to the assumption of a constant pellet diameter in the model. Furthermore, the theoretical predictions reasonably represent the pellet's lifetime across a wide range of substrate temperatures, validating the predictive capabilities of the theoretical model in the present scenario.</p

    Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry

    Full text link
    We investigate the dynamics of pairs of drops in microfluidic ladder networks with slanted bypasses, which break the fore-aft structural symmetry. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative drop spacing, enabling them to contract, synchronize, expand, or even flip at the ladder exit. Our experiments confirm all these behaviors predicted by theory. Numerical analysis further shows that while ladder networks containing several identical bypasses are limited to nearly linear transformation of input delay between drops, mixed combination of bypasses can cause significant non-linear transformation enabling coding and decoding of input delays.Comment: 4 pages, 5 figure

    Evaluating the Ability of Swell Prediction Models to Predict the Swell Behavior of Excessively High Plastic Soils

    Get PDF
    Lightly loaded structures underneath expansive soils encounter severe damage due to the swell/shrink nature of expansive soils resulting from moisture variations. Billions of dollars are spent every year to repair the damages caused by these soils in the U.S. and worldwide. Designing structures to accommodate the swelling strains is a major challenge as predicting the swelling potential of these soils accurately is not easy. A wide variety of swell prediction models have been introduced by various researchers to predict the behavior of these often-problematic expansive soils. These models include various properties of soils such as, plasticity characteristics, compaction conditions, consolidation characteristics, moisture content variations, matric suction, and clay mineralogical characteristics. However, these models are generally developed with typical moderate to high plastic soils in mind whose plasticity indices range from 25 to 45. Their applicability to soils that have liquid limits in the order of 200% is not well understood. In this paper, the ability of these models to predict the behavior of excessively high plastic soils with plasticity indices ranging from 45 to 85 were evaluated. For this purpose, four existing analytical prediction models that use combinations of above-mentioned properties were selected and used to predict the one-dimensional and three-dimensional swelling strains on three high swelling soils. These predictions were verified by conducting one-dimensional and three-dimensional swell tests on the three soil types. The swell tests were conducted at three different initial moisture contents to observe how well the models could predict different levels of moisture absorption. The ability of each of the four selected methods in predicting both 1D and 3D swell strains was discussed and their relative merits and demerits are highlighted. In addition, finite element modeling was performed to simulate one-dimensional and three-dimensional swell tests by using material models that use volumetric and suction changes with moisture contents to simulate expansive soil behavior within the finite element model. The results indicated that while the analytical prediction models gave reasonable results the finite element analysis predicted results were closest to the laboratory measure soils in case both 1D and 3D analyses. Among other analytical models the ones that incorporated mineralogical and suction data exhibited better results

    Hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a square microchannel

    Get PDF
    The transport of deformable objects, including polymer particles, vesicles, and cells, has been a subject of interest for several decades where the majority of experimental and theoretical studies have been focused on circular tubes. Due to advances in microfluidics, there is a need to study the transport of individual deformable particles in rectangular microchannels where corner flows can be important. In this study, we report measurements of hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a linear microchannel with a square cross-section. Our operating conditions are such that the mobility is measured as a function of geometric confinement over the range 0.3 < λ < 1.5 and at specified particle Reynolds numbers that are within 0.1 < Rep < 2.5. The experimental mobility data of each of these systems is compared with the circular-tube theory of Hestroni, Haber, and Wacholder [J. Fluid Mech. 41, 689–705 (1970)] with modifications made for a square cross-section. For polymeric particles, we find that the mobility data agrees well over a large confinement range with the theory but under predicts for vesicles. The mobility of vesicles is higher in a square channel than in a circular tube, and does not depend significantly on membrane mechanical properties. The mobility of cancer cells is in good agreement with the theory up to λ ≈ 0.8, after which it deviates. Comparison of the mobility data of the three systems reveals that cancer cells have higher mobility than rigid particles but lower than vesicles, suggesting that the cell membrane frictional properties are in between a solid-like interface and a fluid bilayer. We explain further the differences in the mobility of the three systems by considering their shape deformation and surface flow on the interface. The results of this study may find potential applications in drug delivery and biomedical diagnostics

    Inertio-elastic focusing of bioparticles in microchannels at high throughput

    Get PDF
    Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min[superscript −1] and 130 m s[superscript −1]. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 BioMicroElectroMechanical Systems Resource Center)National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 EB002503)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-0001
    • …
    corecore